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1. Introduction
The unique properties of silver nanoclusters, radically

different from bulk silver, are determined by quantum

effects [1-6]. Indeed, most of its properties, such as

catalytic activity [7], optical response [8], and electronic

structure [9], strongly depend on atomic configuration.

With this aim, to take full advantage of such properties, it

becomes mandatory to determine the most stable atomic

geometries corresponding to the global minimum GM

configuration of the Potential Energy Surface-PES.

Finding the GM configuration is a challenging task since,

for such clusters, PES is typically rugged containing

many local minima. GAs and BH are two conventional

methods that have been traditionally employed for

structure optimization of nanoclusters. However, these

techniques often suffer from slow execution and are often

trapped by local minima [10-14]. Also, these techniques are rather

computationally expensive for larger clusters. Normally, the

geometrical optimization of a nanocluster intends the attainment of

the total-energy minimum of the system in question, which usually

appears to be a function of all the atomic positions.

Some usual procedures, such as GA methods, rely on simulating

evolution processes-mutation and cross-choice with selection-to

probe PES. Basin-hopping has also been performed-complementing

random steps by the application of local optimizations-with

problems in the scale for potential energy surfaces. Both of these

approaches are very sensitive to the initial configuration and easily

get stuck into a local minimum, particularly for larger clusters. As

far as using these techniques goes, most challenges present

themselves; because of this, alternative recent approaches include

the application of machine learning methods (ML) and
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reinforcement learning methods (RL). Reinforcement

Learning (RL), specifically Deep Reinforcement

Learning (DRL), has emerged as an effective approach to

addressing optimization problems in high-dimensional

domains. DRL use neural networks for approximation of

policies that integrate states (configurations) into actions

(atomic shifts). The model learns through interaction with

the environment, obtaining feedback (rewards) that

corresponds to the energy of the configuration, and

systematically optimizing its strategy over time. Recent

studies have shown that DRL is capable of effectively

exploring complex PES for small molecules and

nanoclusters. This method addresses particular challenges

of conventional techniques by acquiring optimal action

strategies via trial and error, thereby facilitating enhanced

efficiency and precision in optimization. Silver

nanoclusters, exemplified by Ag15, are significant in a

range of applications, encompassing catalysis, sensing,

and optical devices.

The properties of these clusters depend on their size,

shape, and atomic arrangement, making the

determination of their stable configurations critical.

Recent advancements in computational chemistry and

machine learning have enabled more accurate predictions

of nanocluster geometries, but there is still a need for

faster and more efficient methods for larger systems. For

metal clusters, Pt9 and Pt13 clusters, Zhai and

Alexandrova previously presented a GPU-accelerated

global optimization method that integrates deep neural

network (DNN) fitting with limited-step density

functional theory (DFT) optimization, drastically cutting

down on computational cost compared to full DFT local

optimization [15]. To speed up the process of finding the

global minimum configurations for nanoclusters that are

either pure or alloyed, Raju et al. designed a framework

for active learning genetic algorithms [16]. Hansen and

associates used a symmetry constrained GA with a neural

network potential to estimate the energies of Pt−Ni

nanoalloys [18], while Wang et al. [17] used on-the-fly

machine learning to speed up the genetic algorithm (GA) search for

aluminum nanoclusters. Results from investigations of carbon

clusters in gas-phase and supported environments show that the

GOFEE algorithm, created by Bisbo and Hammer [19], an

evolutionary algorithm improved with a machine-learned surrogate

model and Bayesian statistics, effectively finds low-energy

structures in complicated energy landscapes defined by first-

principles methods. In response to these difficulties, this research

presents a new method for detecting GM configurations in

nanoclusters by PES scanning that makes use of deep reinforcement

learning (DRL). To enable the model to produce a wide variety of

geometries, this method starts with randomly configured nodes. For

efficient PES scanning and precise GM configuration localization,

such diversity is critical. An important step forward, our DRL-based

method provides a more effective and efficient way to investigate

the intricate terrain of nanocluster topologies and may be able to

circumvent the shortcomings of conventional evolutionary

algorithms. The framework is sufficiently versatile to be used with

nanoclusters made of a single metal element as well as those made

of an alloy.

Figure 1. Reinforcement learning mechanism
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The problem in this research addresses the optimization

of the geometries of silver nanocluster (Ag15) to identify

their most stable configurations efficiently and accurately.

The limitations of traditional optimization methods call

for the application of more advanced techniques that can

handle the complex PES of nanoclusters and swiftly find

the lowest energy configurations and the global minimum.

This study aims to apply Deep Reinforcement Learning

(DRL) to the optimization of Ag15 nanocluster. The

primary objective is to Employing Deep Reinforcement

Learning (DRL) to efficiently explore the PES of Ag15

nanocluster, identify their GM configuration and the most

stable configurations (low-energy states).

2.Methodology
2.1 Representation of Ag15 nanoclusters

Ag15 nanoclusters are described by atomic coordinates in

Cartesian space, where each of the 15 atoms is

represented by its position in 3D space. This

configuration provides a complete structural

representation of the nanocluster, which will serve as the

basis for energy calculations and further optimizations.

Atom-Centered Symmetry Functions (ACSFs) will be

used to encode the structural features of Ag15. ACSFs

monitor pairwise distances and angular connections

among atoms, serving as a reliable descriptor for machine

learning models [33]. This, in turn, will also introduce the

descriptors that will have properties enabling the

projection of the atomic arrangement of a cluster to a

high-dimensional feature space, allowing a reinforcement

learning agent to represent an understanding of a cluster

architecture. Finally, the nanocluster energies for Ag15-

first are calculated using one of the efficient

computational ways-known for metallic systems-EAM

calculations. The method which is applied here is one

called the Embedded Atom Method, computing the

preliminary approximation of energy for the whole

nanocluster. This would involve the use of DRL to

explore the Ag15 nanocluster for the PES. A generally

assigned agent, with randomly sampled or changed initial

configurations, takes an action in interaction with the environment

to reduce further energy levels. An acting agent, depending on a

cluster state, executes one operation, such as translations and

rotations of atoms to identify the global minimum or other low-

energy configurations. The agent balances exploration and

exploitation in such a way that it uncovers the most optimal

structure of the nanocluster. Regarding increasing diversity in initial

configurations of the Ag15 cluster, "move," "rotate," and "rattle" are

some mutation operations that can be made. Those will result in

changing the structure of the cluster into diverse starting states an

agent could learn from. The objective is to avert premature

convergence of the agent to local minima and to assure

comprehensive exploration of the potential energy surface.

2.2 Deep reinforcement learning framework

DRL is an efficient way to explore high-dimensional configuration

spaces, which naturally emerge due to the huge number of possible

atomic arrangements. This is especially true for nanoclusters such as

Ag15. Indeed, DRL is much more appropriate for dealing with these

complex spaces since it will efficiently navigate through intricate

energy landscapes and optimize molecular structures. Most of the

traditional methods get stuck with huge numbers of possible atomic

configurations that DRL can overcome, given its ability to refine

their strategies by interacting with the system. That makes up one

alternative in effectively finding GM. Applications from DRL in

molecular design have already proven their capability by efficiently

optimizing chemical reaction paths and molecular structures while

outperforming many previous conventional methods. DRL is a

subcategory of Artificial Intelligence that incorporates both

Reinforcement Learning and Deep Learning [20]. An RL system

learns through interactions with its environment by the actions

executed to attain rewards or incur penalties. Such learning thus

enables an agent to achieve an objective, which is to maximize

cumulative rewards over time. DRL effectively merges RL with

deep neural networks such that the agent can manage high-

dimensional state spaces and complicated environments. By using

neural networks to represent decision-making policies, DRL can

learn and discover innovative strategies that are not predefined.
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In the case of Ag15 nanoclusters, the formulation of the

DRL frame is such that it optimizes the possibility of

PES and explores the GM configuration. The balanced

exploration-exploitation ability of DRL is important in

researching new configurations and refining the known

ones that are effective to give the best atomic

arrangement in the cluster [21]. This immediately offers a

more significant concept than that of traditional

variational methods when the exploration of a

nanocluster configuration would be required. The RL

problem is couched, in this instance, in the exploration of

PES for Ag15 clusters, seeking the most stable

configuration, or GM. That framework follows the MDP

model wherein, at every step in time, the agent chooses

an action given its current state and receives a reward,

changing its state. The agent learns an optimal policy to

maximize expected cumulative rewards.

To mitigate the challenges posed by high-dimensional

state spaces, DRL uses deep learning techniques to

represent policies, enabling the agent to process complex

environments effectively. We applied the Trust Region

Policy Optimization (TRPO) algorithm to stabilize policy

learning. TRPO combines both value-based and policy-

based methods, using an actor-critic network where the

actor determines actions and the critic evaluates them.

This approach reduces the variance of policy gradients

and enhances training stability. In our study, we

have illustrated how to formulate an RL problem for

exploring the PES of nanoclusters, with the goal of

detecting GM structures. Reinforcement learning

mechanism is presented in figure 1. This formulation

encompasses the state (��), action (��), reward function

(�� ), Transition Function �(��+1|��, �� ) and Policy

(��) , each tailored to the specific challenges of

nanocluster PES analysis [22-26].

(a) State Space ��
The state space St represents all possible configurations

of the Ag15 cluster. Each state corresponds to a specific

atomic arrangement, and the configuration is encoded using Atom-

Centered Symmetric Functions (ACSFs). ACSFs serve as

descriptors of the local atomic environment and capture the essential

structural features needed for DRL to evaluate the configuration’s

energy. Binary vectors are also employed to record certain events,

such as whether the agent encounters overlapping atoms,

dissociation, or revisits a previously identified minimum. These

encoded states are processed by multilayer perceptrons and used as

input for the critic network.

(b) Action space��

The action space �� consists of two types of actions that the agent

can perform at each step. In action 1 the agent randomly selects an

atom from the Ag15 cluster. In the action 2 selected atom is then

moved by a distance of either +2.0 Å or −2.0 Å, with the direction

of movement determined by a vector from the atom’s initial position

to the center of mass of the cluster. This action space allows the

agent to explore different atomic arrangements by selecting atoms

and repositioning them, effectively searching for local minima and

eventually the global minimum.

(c) Reward function ��

The reward function �� is designed to encourage the agent to find

low-energy configurations. Positive rewards are given for

configurations that have lower energy than the previous

configuration. Negative rewards penalize configurations that cause

atom overlap or cluster dissociation. The goal of the agent is to

maximize cumulative rewards by progressively discovering

configurations with lower energy. The reward structure for the Ag15

nanocluster is as follows. If the agent’s action causes an atom to

dissociate from the cluster, a significant penalty of −10 is imposed.

If the agent’s actions result in overlapping atoms, another penalty of

−10 is applied. If the agent revisits a previously identified local

minimum in the same episode, it receives a penalty of −10. When

the agent finds a new local minimum with lower energy than the

initial configuration, it receives a reward proportional to the energy

difference. The reward is calculated as following equation 1.

푟푒푤�푟� = 1000 × ∆� Eq (1)

where ΔE is the energy difference in eV between the new
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minimum and the initial configuration.

If the agent finds a configuration with higher energy than

the initial setup, no reward is given. These rewards

encourage the agent to find stable, low-energy

configurations while avoiding configurations that result

in atom overlap or dissociation. The termination criteria

for each episode are as follows. The episode ends when

the agent identifies five new lower-energy minima.

Alternatively, the episode also concludes when the

maximum number of steps is reached.

(d) Transition function �(��+�|��, ��)

The transition function determines the new state ��+1

after taking action ��  in state �� , representing a new

atomic configuration.

(e) Policy (��)

Policy �� is a strategy or mapping from states to actions.

The policy determines the agent’s behavior at any time. It

can be deterministic (one action for each state) or

stochastic (a distribution over actions for each state).

Figure 2. Actor-Critic RL architecture.

2.3 Actor critic architecture

The DRL model uses an actor-critic architecture [30-32],

where the actor selects actions and the critic evaluates the

quality of those actions based on the rewards received.

The Trust Region Policy Optimization (TRPO) [29] algorithm is

used to optimize the agent’s policy during training, balancing

exploration (trying new configurations) and exploitation (refining

known good configurations). This actor-critic architecture process is

shown in figure 2. The actor decides on an action based on current

policy and environment provides feedback in the form of reward

and new state. The critic evaluates the selected action’s value and

computes a learning signal. The actor updates the policy based on

the feedback from the critic. This process repeats iteratively until

the policy converges to an optimal solution.

2.4 Computational methods

In the geometry optimization and energy-force calculations of the

nanoclusters, we have used the effective medium theory

potentials. EMT is a semiempirical interatomic potential widely

used in materials science, especially for the study of metallic

systems and alloys, because of its computational efficiency. EMT

represents the potential energy of an atom within a material using

an "effective medium" that reflects the influence of surrounding

atoms. The total energy is a combination of pairwise interactions

and contributions from the electron density of neighboring atoms,

capturing key aspects of metallic bonding. The EMT has found

wide applications in the investigations of structural properties,

formation energies, surface energies, and defect structures of

metals, alloys, and nanoclusters, serving in this respect as an

effective tool for large-scale simulations where quantum

mechanical methods cannot be applied.

2.5 Computational tools

This research use the computational tools specified in the

technique provided:

2.5.1 OpenAI Gym

OpenAI Gym is one of the common toolsets for the creation and

evaluation of reinforcement learning algorithms. In this work,

OpenAI Gym is utilized as a basis for the implementation and

testing of a DRL model applied to the optimization of nanocluster

structures. It provides the possibility to work in a unified way with

different environments in a very convenient manner while designing

experiments and comparing algorithms. The Gym environment of

the nanocluster's potential energy surface, coupled with the DRL,
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allows the agent to better explore and optimize the atomic

topologies [36].

2.5.2 Tensorforce

Tensorforce is an extended version of TensorFlow that

allows creating and elaborating on state-of-the-art deep

reinforcement learning to model RL. As part of the model,

in the present paper, it is adopted for training the DRL

agent with its exploration of PES regarding nanoclusters.

By dealing with basic reinforcement learning

complications, it involves the learning based on neural

networks and policy optimization. Therefore, Tensorforce

improves nanocluster topologies according to energy

evaluations on the model and refines the process of

decisionmaking of an agent [37].

2.5.3 Embedded atom method (EAM):

The work applied the Embedded Atom Method to obtain

the basic energy calculation for the nanoclusters. The

EAM model is a semi-empirical approach that has been

widely used to model atomic interactions in metallic

systems within material science and technology. The

EAM expresses the total energy of a system in terms of a

contribution from each atom, taking into consideration

the local atomic environment surrounding every atom.

EAM represents a computationally fast way of estimating

the interatomic forces and energy that are necessary in

large-scale simulations, such as the optimization of

nanocluster architectures [27].

2.6 Deep reinforcement learning experiments

In this respect, we experimentally demonstrate the

proposed DRL framework on Ag15 nanoclusters by using

OpenAI Gym and Tensorforce-known for their

robustness and flexibility to solve complex reinforcement

learning problems [28]. Each experimental episode was

designed in such a way that there should be a maximum

execution of 200 action steps in order to comprehensively

explore the action space without wasting computing

resources. Other important parts of our research involved

the energy and force calculation for nanoclusters using

the effective medium theory potentials. EMT can be

regarded as a very reliable and computationally efficient estimation

of interatomic forces and energy in metallic systems [38-40]. By

embedding EMT into our DRL framework, we guaranteed that the

model's inferences were based on physically correct data, hence

enhancing the reliability of the optimization process. In the quest for

preferred nanocluster configurations, the reinforcement learning

agent was tasked with the objective of finding five different lower-

energy minima in each episode. The training methodology started

with randomly generated nanocluster structures that were relaxed to

local minima. These relaxed setups therefore formed the basis for a

DRL framework that enabled further training.

2.7 Generation of initial random configurations

In this study related to nanocluster geometries using the DRL

framework, there is a requirement to generate several initial states

for each training-again and again-either by randomly generating a

single geometry or generating a couple of random geometries

with some stochastic process. A newly obtained hybrid

configuration, akin to "offspring," is generated in this process by

the use of crossover operations, as commonly called "mating

operations.". The methodologies used in the crossover tactics are

taken from the BPGA [34-35]. In order to increase the diversity

of these initial states and include a wider range of possible

configurations, we have implemented various mutation processes

from the BPGA in the creation of the initial random geometries.

The idea here is that the methodology would involve a random

creation of configurations in the first phase, followed by a

mutation operation in the second, so as to ensure that training

starts with truly diverse initial configurations.

2.8 Identification of global minimum and low-energy stabled

configurations

In each episode, the model observed all low-energy configurations

and separately archived the lowest energy configurations. A

collection of the lowest energy configurations is generated, usually

comprising a certain quantity (10 configurations). As new minima

are identified during the training process, each new minimum

supplants the highest energy configuration in the pool. This iterative

procedure persisted until the training wrapped up. Upon completion

of the training, the model discerned the global minimum (GM) and

other low-energy configurations from the archived minimum
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configurations throughout the episodes. Alternatively,

upon completion of the training phases, a specialized

analysis is performed to ascertain the ground state and the

lowest energy configurations. This research entails

scrutinizing the retained minimal configurations gathered

throughout the training episodes.

3. Results and discussion
In this study we have elucidated the detailed analysis of

our DRL experiment on Ag15 cluster. The DRL model

successfully identified the global minimum and the most stable

configurations for Ag15, significantly reducing the time to

convergence compared to traditional methods. The agent was able to

find low-energy configurations with high accuracy, often

outperforming GAs and BH in terms of the number of steps required

to reach the GM. Figure 3 represents the progression of episodic

rewards during the training of a Deep Reinforcement Learning

(DRL) model applied to the optimization of Ag15 nanocluster.

Figure 3. Rewards throughout the training session.

Figure 4.Moving average reward.
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The graph contains two key elements: Brown Lines –

These represent the episodic rewards the agent received

after each action or step during the training episodes. In

reinforcement learning, the agent learns to make

decisions based on feedback, which is given as a reward

for its actions in a given state.

Green Curve – This represents the moving average of the

episodic rewards, which is calculated over a specified

window of episodes to smooth out the fluctuations in the

rewards and show the general trend of the agent’s

learning progress. The moving average at each episode �,

denoted as��� , is calculated as the average of the last

� episodic rewards (equation 2).

��� =
1
� �=�−�+1

� ��� Eq (2)

This formula means that the moving average at time � is

the average of the rewards from episodes � −�+ 1 to �.

��� is the moving average of the rewards at time step �,

�� is the episodic reward at step �,� is the window size,

which is the number of episodes over which the average

is calculated. The brown lines represent the episodic

rewards at each episode, which are given to the agent

based on its actions during that episode. In optimizing the

Ag15 nanocluster, the agent's goal is to explore various

configurations and find the most stable (lowest-energy)

structure. Moving average reward is represented in figure

4.

3.1.1 Exploration vs. Exploitation:

In early training, the agent is more likely to explore the

Potential Energy Surface (PES) of the Ag15 nanocluster,

which results in higher fluctuations in the episodic

rewards. This stage is essential for discovering different

configurations. As the agent learns which configurations

are more stable, it starts to exploit the better solutions it

has discovered. This reduces fluctuations and increases

the episodic rewards, resulting in a more consistent upward trend.

The green curve (moving average) highlights the balance between

exploration and exploitation. The agent initially explores new

configurations, but over time, it focuses on refining its knowledge to

exploit already discovered low-energy configurations.

3.1.2 Convergence to global minimum:

As the green curve starts to plateau, this likely indicates that the

agent has identified a set of low-energy configurations and is no

longer making significant improvements. The curve is flattening at a

6500 episodic rewards value, it suggests that the agent has

successfully optimized the Ag15 nanocluster, possibly converging to

its global minimum state near-optimal configuration.

3.1.3 Learning efficiency:

The rate at which the green curve rises gives insight into how

quickly the agent is learning. A sharp increase is indicating the rapid

learning and improvement in identifying stable configurations.

3.1.4 Training Stability:

A flattening or plateau of the green curve at 6500 episodic rewards

is an indication of stability in the learning process, where the agent

has likely achieved convergence. In optimization of Ag15, this

indicates that the optimization process is successful in identifying

stable, low-energy atomic configurations.

Figure 5. Energy profile before stable policy.
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Figure 6. Configurations at different time steps before stable policy.
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Figure 7. Energy profile after stable policy.

Figure 8. Configurations at different time steps after stable policy.

3.2 Energy profile analysis before development

of stable policy

Figure 5 represents the energy profile obtained from a

representative episode in the initial phases of training for

Ag15 nanoclusters, prior to the agent achieving a stable

policy and these configurations are represented in figure 6. During

the initial training phase, the configurations are primarily

disassociated or overlapped. Consequently, the agent does not

execute relaxation on these configurations, leading to immediate

negative feedback. Furthermore, the displacement of atoms from
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these elevated energy states is resulting in increasingly

unfavorable configurations, thereby exacerbating the

negative rewards. The energy profile depicted in figure 5

indicates that the episode concludes after 200 time steps,

with the agent failing to identify five distinct lower-

energy minima. However, after approximately 6500

episodes, the agent began to learn an effective policy, and

the rewards eventually stabilized.

3.3 Energy profile analysis after development of stable

policy

Figure 7 represents the configurations and energies of

nanoclusters subsequent to the agent acquiring a stable

policy. In this representative episode, the agent

performed the task in 10 time steps, successfully

identified five different minimum configurations and four

similar minimum configurations. These configurations

are represented in figure 8. It reflects that this agent

implemented an effective policy without generating

overlapped or dissociated configurations. Although the

goal of each episode is to find five different local minima,

in the process, the agent also explores other higher-

energy configurations that allow it to cover more space

by moving atoms from those high-energy states. After

training, we collected all the minimal configurations

found and performed a deep analysis to identify the

distinct configurations.

3.4 Global minimum and lowest energy

configuration analysis

In start, policy is not stabled and agent is unable in

exploring minimum configurations even after competing

200 steps per episode and agent encountered the negative

reward as it produced overlapped cluster configurations.

This period is of exploration and agent is in learning

policy phase, after approximately 6500 episodes, policy

is stabilized and agent started to explore minimum energy

configurations successfully even after 5 to 6 steps per

episode. After the training DRL successfully identified

the global minimum and three other lowest energy

configurations. Fig. 7 is representing the global minimum

and three lowest energy configurations of Ag15 nanocluster,

identified by the DRL.

Figure 9. Global minimum and three lowest energy configurations

identified by DR.

In start, policy is not stabled and agent is unable in exploring

minimum configurations even after competing 200 steps per episode

and agent encountered the negative reward as it produced

overlapped cluster configurations. This period is of exploration and

agent is in learning policy phase, after approximately 6500 episodes,

policy is stabilized and agent started to explore minimum energy

configurations successfully even after 5 to 6 steps per episode. After

the training DRL successfully identified the global minimum and

three other lowest energy configurations. Fig. 7 is representing the

global minimum and three lowest energy configurations of Ag15

nanocluster, identified by the DRL.

3.5 Descriptive statistics from DRL experiments

Metrics of DRL experiments for 32000 episodes are represented

in figures 10 (a)-(c). There are maximum steps of 200 for each

episode to explore the minimum energy configurations. Total

number of overlapped configurations in whole experiment is

illustrated in Figure 10(a), in starting when policy is in learning

phase and trying to explore the minimum energy configurations,

there are more number of overlapped configurations. After

approximately 6500 episodes, agent has started to minimize the

overlapped configurations and agent has successfully started to

explore the minimum energy configurations in perspective

episodes. Figure 10 (b) is describing the total number of

nonbonded configurations. In early phase, when policy is

learning there are more number of nonbonded configurations.

When policy is stabilized, number of nonbonded configurations

is minimized. Figure 10(c) is illustrating the total number similar

minimum configurations. In early episodes, less number of

similar minimum energy configurations are explored by the agent.

After 6500 episodes, when policy is stabilizing, agent has started
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in exploring the more minimum energy configurations

in perspective episodes. A high count of overlapped

configurations in figure 11 indicates initial

difficulties in avoiding geometrically improbable

configurations. A substantial reduction in

overlapped configurations shows that the model’s

policy learned to avoid these configurations, further

optimizing the search for lower energy states. A
high count of overlapped configurations in figure 11

indicates initial difficulties in avoiding geometrically

improbable configurations. A substantial reduction in

overlapped configurations shows that the model’s policy

learned to avoid these configurations, further optimizing the

search for lower energy states.

In pre policy learning phase of figure 13, fewer relaxations to

local minima led to limited encounters with similar

configurations, suggesting an initial lack of diversity in the

configurations reached.

Figure 10. Total number of (a) overlapped, (b) nonbonded and (c) similar minimum configurations in DRL experiments
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Figure 11. Overlapped configurations in pre and post policy learning phase.

Figure 12. Number of nonbonded configurations in pre and post policy learning phase.

Figure 13. Similar minimum configurations in pre and post policy learning phase.
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In the post learning phase of figure 13, with the model

concluding episodes more quickly and finding lower energy

configurations more efficiently, the instances of

encountering similar configurations diminished, indicating

a more focused and effective search strategy.

The Deep Reinforcement Learning (DRL) approach has

demonstrated significant efficacy in optimizing the search

method for determining the most stable configurations of

nanoclusters. The model initially operated through a process

of trial and error, which proved to be inefficient.

Subsequently, upon acquiring a solid policy, there was a

notable shift towards a more informed and strategic

exploratory methodology. This transition represents a

significant enhancement of the model's ability to navigate

the complex energy landscapes of nanoclusters. The

framework exhibited a great enhancement in avoiding

structures that are less stable, nonbonded, dissociated, or

overlapping and energetically unfavorable. The ability to

avoid such configurations is important for the effective

search of global minimum energy states. Additionally,

subsequent to learning the policy, the DRL framework

indeed guides the agent to reach the lower energy states

rapidly. The efficiency shows that the model really learned

its policy with success in arriving at the lower energy

configuration quickly. These pieces of data all point and

affirm together that the proposed DRL framework is indeed

effective in improving the search approach toward the

attainment of the optimum configurations of nanoclusters,

succeeding in traversing complex potential energy

landscapes in view of realizing the most stable arrangement

of nanoclusters.

5. Conclusion
The work illustrates that DRL is a very effective and efficient

optimization technique for the geometries of Ag15 silver

nanoclusters. We have identified the stable configurations with

much speed and preciseness by applying Deep Reinforcement

Learning compared to conventional optimization techniques

such as genetic algorithms and basin hopping, which are

suffering frequently from ineffective convergence rates and a

potential for prematurely converging on suboptimal solutions.

Because DRL can change its approach dynamically based on

feedback from the environment, it naturally performs much

better in the investigation of complex PES for nanoclusters.

Due to the nature of this method, it manages to balance

exploration and exploitation without getting stuck into a local

minimum; thus, it accelerates the process toward the GM. This

implies that the new technique, DRL, will provide more

rapidity and accuracy in determining stable atomic

configurations compared to the conventional methods applied

in the case of silver nanoclusters.

This innovative technique develops not only the knowledge of

nanocluster stability, bringing new visions of atomic

configuration and energy landscapes, but also provides a

prospect for future applications in the design of nanomaterials

and in materials science. The application of DRL to Ag₁₅

clusters will better optimize their structural stability,

something highly relevant for new nanomaterials

developments with specified properties. Furthermore, the

flexibility in the DRL method also allowed the attainment of

new advanced materials in such cases as catalysis,

nanomedicine, and other electronic devices. Thus, the obtained

effectiveness of DRL on optimum nanocluster structures

demonstrates that this is another impressive step forward in

applying machine learning to materials exploration and design.
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