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Abstract
The escalating challenge of climate change necessitates an urgent exploration of factors influencing
carbon emissions. This study contributes to the discourse by examining the interplay of technological,
economic, and demographic factors on environmental sustainability. This study investigates the impact of
artificial intelligence (AI) innovation, economic growth, foreign direct investment (FDI), energy
consumption, and urbanization on CO2 emissions in the United States from 1990 to 2022. Employing the
ARDL framework integrated with the STIRPAT model, the findings reveal a dual narrative: while AI
innovation mitigates environmental stress, economic growth, energy use, FDI, and urbanization
exacerbate environmental degradation. Unit root tests (ADF, PP, and DF-GLS) confirm mixed integration
levels among variables, and the ARDL bounds test establishes long-term co-integration. The analysis
highlights that AI innovation positively correlates with CO2 reduction when environmental safeguards are
in place, whereas GDP growth, energy consumption, FDI, and urbanization intensify CO2 emissions.
Robustness checks using FMOLS, DOLS, and CCR validate the ARDL findings. Additionally, Pairwise
Granger causality tests reveal significant one-way causal links between CO2 emissions and economic
growth, AI innovation, energy use, FDI, and urbanization. These relationships emphasize the critical role
of AI-driven technological advancements, sustainable investments, and green energy in fostering
ecological sustainability. The study suggests policy measures such as encouraging green FDI, advancing
AI technologies, adopting sustainable energy practices, and implementing eco-friendly urban
development to promote sustainable growth in the USA.
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Introduction
The environment is crucial for supporting life on Earth; nevertheless, the increasing global pollution and
waste have emerged as a significant problem in recent years [1,2]. The majority of climate-altering and
planet-warming substances emitted into the atmosphere are carbon dioxide (CO2) [3]. The United States
(USA) distinguishes itself among these nations through its evolution as a dominant force in consumption
as well as production [4]. In 2020, the USA emitted 5,416 metric tons (MT) of CO2, or almost 16% of
global emissions [5]. However, in 2021, the United States reinforced its dedication to the Paris Agreement,
adopting an ambitious Nationally Determined Contribution to reach a 50–52% drop in net greenhouse gas
(GHG) emissions by 2030 [6,7]. The United States consumes the largest quantity of fossil fuel annually,
totaling 913.3 million tons of oil, which is 50% greater than China's consumption, the second highest
globally [8,9]. Alleviating the adverse effects of global climate change has emerged as a worldwide
priority, with a crucial component of this effort being the reduction of CO2 emissions [10,11]. In
accordance with the UN 2030 universal sustainable development objective, the advancement of
renewable energy is prioritized above everything else. Consequently, the USA has considerable
accountability for the climate crisis and global warming, being one of the foremost emitters of GHGs;
thus, assessing its environmental sustainability is a critical issue. In this context, our research question is
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to examine the response of GDP, FDI, energy consumption, urbanization, and AI innovation on CO2

emissions in the context of United States.
Several scholars have thoroughly investigated the ecological conditions in the United States, mostly
utilizing pollution metrics such as CO2 emissions [12,13]. By encouraging domestic investment,
facilitating technological transfers in the receiving nation, and boosting the development of human capital,
foreign direct investment (FDI) enhances economic growth and is therefore essential to economic
development [14]. Another viewpoint holds that FDI improves host countries' surroundings by bringing
cutting-edge environmental technologies and sustainable practices [15,16]. The environment field is not
an exception to the dramatic transformations we have lately experienced in numerous industries as
artificial intelligence (AI) has grown more integrated. The United States leads in AI development and will
be essential in developing suitable guardrails and regulatory frameworks that promote the responsible use
of the technology [17]. The development of AI technologies can help address several global green growth
concerns. Furthermore, applying AI can reduce environmental emissions [18]. Businesses are facing
pressure to curtail GHG emissions and promote environmentally friendly practices as the global
community battles climate change.
In 2020, the United States was the second-largest contributor to world pollution, producing 4.7 billion
metric tons of CO2. Multiple studies has demonstrated the mixed consequences of GDP on CO2 emission
in different regions [19,20,21]. After acknowledging this fact, politicians and governments must create
plans for resource sustainability and seek solutions that strike a balance between ecological sustainability
and GDP [22]. Increased use of clean energy sources is thought to be able to lessen the negative economic
effects of climate change [23,24]. Between 2005 and 2022, emissions from the energy sector decreased by
35.9%, during which the sector represented almost one quarter of total US emissions. Furthermore, the
United States' share of GDP in 2015 that went toward renewable energy was 0.2%, far less than that of
other developing nations like South Africa (1.4%), China (0.9%), India (0.5%), and Brazil (0.4%) [25].
With a 15.8% share of primary energy consumption and 13.8% share of CO2 emissions in 2020, the
United States is also the world's top primary energy consumer [26].
This study enhances existing research in the following manners: Firstly this paper critically analyzes the
correlation among AI innovation, foreign direct investment, and CO2 emissions in the United States.
Secondly, unlike previous studies that solely examined developing nations, this research focuses on one
of the world's most industrialized countries with a robust financial system, with the aim of investigating
and clarifying the relationship between financial systems and environmental sustainability. Moreover, it is
the inaugural investigation of the dynamic interconnections among AI innovation, energy consumption,
and foreign direct investment (FDI). Specifically the United States provides an ideal context for
investigating the correlation between economic activity and environmental sustainability, given its
significant ecological deficit and developed economy. This study reveals that while AI innovation reduces
CO2 emissions, factors such as GDP, FDI, urbanization, and energy consumption exacerbate
environmental degradation. This unique contribution is vital for stakeholders as it offers tangible insights
into how industrialized countries, like the USA, may harmonize economic growth with environmental
sustainability. Additionally, the research corroborates the STIRPAT framework along with sophisticated
methods like ARDL in the United States, employing a contemporary dataset from 1990 to 2022.
Furthermore, it employs a comprehensive approach and innovative econometric models to offer
significant insights that aid the United States in its endeavors to attain SDG-7 and SDG-13, especially in
the quest for carbon neutrality. This research offers governments, corporations, and environmental
advocates scientifically substantiated ideas for reconciling economic and environmental objectives,
chiefly via financial, technological, and industrial modifications.
The subsequent portions of this work are organized as follows: Section II examines the pertinent literature,
Section III delineates the methodology and data, Section IV showcases the results and analysis, and
Section V explores the policy implications and conclusions.
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Literature Review
It is clear from a thorough analysis of earlier research that not many studies have looked into the
connection between GDP, energy use, FDI, CO2 emissions, and AI innovation. The bulk of publications
concentrated on the effects of trade openness, urbanization, and green energy usage on environmental
quality, even though several investigations looked at the ARDL model. The USA hasn't seen much in-
depth research on ecological degradation, a relatively young discipline. Nevertheless, the research drew
upon a few previous studies to guide the selection of variables and methods. This section will address a
select few of these questions.

GDP and CO2 emission
Numerous researches have been conducted to ascertain the correlation between environmental and
economic activity. For example, Manu and Sulaiman [27] examined the impact of energy consumption
and economic growth on Malaysia's CO2 emissions utilizing the OLS method for the years 1965 to 2015.
Their research demonstrated that CO2 emissions diminish as revenue escalates. The favorable relationship
between economic expansion and CO2 emission is found by Saudi et al.[28], and Zubair et al.[29].
Conversely, Sarkar et al. [30] analyzed time-series data from 1980 to 2016 to investigate the relationship
among Malaysia's energy use, CO2 emissions, and economic expansion. The empirical evidence indicated
that usage of energy and economic expansion substantially elevated CO2 emissions in Malaysia from
1980 to 2016. In order to examine the relationship between GDP and CO2 emissions, Chen et al. [31]
used China's annual data from 1990 to 2020 and the QARDL technique. They discovered that China's
GDP has a positive effect on CO2 emissions. Etokakpan et al. [32] analyzed the relationship between
capital formation, globalization, CO2 emissions, and GDP in Malaysia using a dataset from 1980 to 2014
within a multivariate framework. The authors employed an innovative combined co-integration test to
ascertain the magnitude of the long-run equilibrium relationship. The empirical findings indicated that
GDP adversely affected environmental quality. Multiple researcher such as Wada et al.[33] within Brazil,
Rjoub et al. [34] in Turkey and He at al.[35] within Mexico found the same conclusions. On the other
hand, Muhammad et al. [36] employed FMOLS and two-stage least squares regression methods to
analyze the correlation between GDP growth and CO2 emissions. The findings corroborated the U-shaped
link indicated by the EKC theory in high- and upper-middle-income nations.

AI innovation and CO2 emission
The loss of biodiversity and global warming are complex concerns that require advanced and inventive
solutions [37]. Environmental professionals anticipate several benefits from AI tools [38]. Policymakers
can use AI innovation to develop scientifically supported plans and strategies for green ecosystems [39.
Existing research indicates that investigations on carbon reduction related to AI are in their infancy. A
pertinent study by Liu et al. [40] analyzes industrial robot data from 16 sectors in China from 2006 to
2016 to investigate the correlation between AI and energy intensity. The implementation of AI
technology in the industrial sector diminishes energy intensity by enhancing industrial output while
decreasing energy consumption and environmental degradation. Chen et al. [41] investigate the impact of
AI on carbon emissions utilizing panel data from 270 Chinese cities spanning 2011 to 2017. Their
empirical findings indicate that AI decreases carbon emissions by optimizing production processes,
boosting communication facilities, and advancing green technological innovation. Negi [42] examines the
investment trends in artificial intelligence originating from the three leading nations: China, India, and the
United States. The paper delineates the measures the government has implemented to integrate artificial
intelligence into its existing ecosystem. Green AI can enhance productivity and mitigate its adverse
environmental impacts [43].

Energy Use and CO2 emission
The primary contributor to climate change is the combustion of fossil fuels, which releases significant
quantities of greenhouse gases into the environment [44]. But long-term cost reductions from using
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alternative or green energy sources will raise people's overall level of living [45]. Raihan et al. [46]
examine the relationship between energy use and CO2 emissions in Malaysia from 1990 to 2019. They
employed the ARDL and DOLS methodologies, which revealed a positive and significant energy use
coefficient in relation to CO2 emissions, indicating a 0.91% rise in CO2 emissions for every 1% increase
in energy usage. Adebayo and Kalmaz [47] employed ARDL, FMOLS, and DOLS estimators to reveal a
substantial positive correlation between power consumption and CO2 emissions in Egypt, utilizing data
from 1971 to 2014. Moreover, Adebayo et al. [48] identified a positive correlation between CO2

emissions and energy consumption by employing the ARDL model for MINT nations, covering the
period from 1980 to 2018. Conversely, Raihan and Tuspekova [49] examined the correlation between
green energy utilization and CO2 emissions in Peru from 1990 to 2018. Using the DOLS and ARDL
methodologies, they found a negative correlation and statistical significance in the utilization of clean
energy, suggesting that a 1% increase in green power use results in a 0.52% reduction in CO2 emissions
over the long term. Multiple researcher such as Abbasi and Adedoyin [50] in China, Balsalobre-Lorente
et al.[51] across BRICS countries, Saqib [52] in MENA region corroborated the destructive effect of
energy usage on environment quality. On the other hand, Younis et al.[53], Salari et al.[54] concluded
that energy consumption boost the environment quality. In the end, energy-efficiency regulations can
enhance energy conservation, while increased investment in energy production and the promotion of
energy savings will diminish carbon emissions [55].

FDI and CO2 emission
Foreign Direct Investment (FDI) can facilitate the transfer of cleaner technologies and sustainable
practices, leading to enduring reductions in emissions [29,56]. Jafri et al. [57] investigate the asymmetric
impact of FDI on CO2 emissions utilizing the NARDL methodology for China from 1981 to 2019. Their
findings indicate that a positive shift in FDI has a comparatively greater impact on CO2 emissions.
Moreover, several studies also found the same conclusion in different region [58,59,60,61]. On the other
hand, Lin et al. [62] examine the impact of FDI on emission reduction in China from 2004 to 2015,
employing geographic Durbin economic models with two-way fixed effects. The findings indicate that
FDI facilitates a decrease in emissions nationwide. Furthermore, Eskeland and Harrison [63] contended
that FDI typically accompanies energy-efficient technologies and may positively impact the natural world.
Similar outcomes were also observed by Wang et al. [64] in China, Pata and Samour [65] within France,
and Abbas et al.[66] in developing countries. Conversely, Haug and Ucal [67] shown that spikes
in FDI had no statistically significant long-term effects on per capita CO2 emissions.

Urbanization and CO2 emission
Economic growth and industrialization-driven urbanization are contributing to the rising utilization of
fuels that generate greenhouse gas emissions [68].The concluding section of the research examines
previous studies on the empirical relationship between urbanization and CO2 emission. For instance,
Mahmood et al. [69] examine the impact of urbanization on per capita CO2 emissions in Saudi Arabia,
analyzing data from the years 1968 to 2014. The findings indicate that urbanization hinders the
environment due to its elastic impact on emissions. Parshall et al. [70] examined the substantial impact of
urbanization on the circular economy and environmental health in the USA. Raihan et al. [71] explore the
impact of urbanization on the load capacity factor in Mexico from 1971 to 2018. This study utilizes the
ARDL approach and demonstrates that urbanization decreases Mexico's LCF, thereby degrading the
ecology. Sufyanullah et al. [72] examined the impact of urbanization on CO2 emissions in Pakistan. They
employed the ARDL model and noted that CO2 emissions rise with increased urbanization. Additional
studies [73,74,75,76,77] suggest that urbanization increases CO2 emissions in the atmosphere. In
comparison, Xu et al. [78] evaluated the impact of urbanization on the ecosystem in Brazil from 1970 to
2017. Unexpectedly, the results of the ARDL methodology indicated that urbanization does not influence
the surroundings in Brazil. Moreover, Haseeb et al. [79] revealed analogous findings utilizing FMOLS
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from 1995 to 2014, suggesting that URB had no significant impact on environmental quality in the
BRICS nations. Nonetheless, as highlighted by Martinez et al. [80] urbanization may contribute to
addressing climate change due to the heightened knowledge among these groups. Moreover, Diputra and
Baek [81] determined that urbanization exerted no substantial impact on emissions in Indonesia.

Literature Gap
The current status of research indicates that studies on the USA are scarce. The empirical literature lacks
an evaluation of the geographical implications of macroeconomic variables on CO2 emissions in the USA.
The literature on the STIRPAT framework and ARDL methodology is deficient in the USA and similarly
limited in other global locations. This study tries to fill in that gap by looking at modern variables using
advanced methods from a U.S. point of view. The goal is to find the main and secondary effects of GDP,
AI innovation, energy consumption, urbanization, and FDI on CO2 emissions in this area. By examining
these procedures, the USA may determine whether leveraging technological innovation, financial
integration, and commercial expansion can enhance its ecosystem quality and align it with global trends
toward greater environmental sustainability.

Methodology
Data and Variables
This study seeks to observe the impact of GDP, FDI, AI innovation, energy use, and urbanization on CO2

emissions in the USA. The study utilizes CO2 emissions as an indicator of ecological health, employing
data from the World Development Indicators (WDI) database as the dependent variable. Statistics on AI
innovation are sourced from Our World in Data, while data for GDP, energy consumption, foreign direct
investment (FDI), and urbanization are derived from the revised WDI. These variables encompass annual
data from 1995 to 2022. Table 1 presents a complete enumeration of each variable along with their
respective details and a sign chosen for this research.

Table 1. Variables description

Variables Description Logarithmic Form Unit of
Measurement

Source

CO2 CO2 Emission LCO2 CO2 Emission (kt) WDI
GDP Gross Domestic

Product
LGDP GDP per capita

(current US$)
WDI

AI AI Innovation LPAI Estimated
Investment in AI
(US$)

Our World in Data

ENU Energy use LENU Energy use (kg of
oil equivalent per
capita)

WDI

FDI Foreign Direct
Investment

LFDI Net Inflows
(Current US$)

WDI

URB Population LPOP Population, total WDI

Theoretical Framework
The STIRPAT paradigm holds substantial importance for environmental research. This method is a
versatile analytical tool that facilitates the understanding of intricate relationships between human
societies and the environment, irrespective of the subject matter, including GHG emissions, air pollution,
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deforestation, or biodiversity loss [82]. By using STIRPAT, this study allows for an extensive evaluation
of numerous variables that affect CO2 emissions in the context of USA. The IPAT model was proposed
by Ehrlich and Holdren [83] and is phrased as follows:

I = ∫PAT (1)

Nonetheless, this model proved challenging to evaluate hypothetically [84]. To address these constraints,
Dietz and Rosa [85] expanded the IPAT model, resulting in the STIRPAT model. This research can
effectively assess the interplay between human activities and environmental outcomes by representing
CO2 emissions as the 'I' or impact variable, urbanization as the 'P', and other variables like AI innovation,
GDP, energy consumption, as the 'T' or technological variables. Equation (2) shows the functional form
of the STIRPAT framework:

�� = �. ��
�.��

�.��
�. �� (2)

Based on a comprehensive review of relevant literature, the empirical model employed in this work
yielded the subsequent approximations.

퐸푛푣�푟표푛�l푛��拠 ��푝��� = � �표푝푢拠���표푛, ���拠푢l푛�l, �l�ℎ푛표拠표�� (3)

To assess the effects on the environment, this study uses CO2 emissions as a proxy indicator. This is the
expression that may be used to derive Equation (4):

CO2it = �0 + �1퐺���� + �2���� + �3퐸���� + �4퐹���� + �5�푅���� + ��� (4)

Here, GDP stands for gross domestic product; AI innovation was represented by AI, energy use through
ENU, foreign direct investment via FDI and urbanization by URBA. Equation (5) makes use of the
logarithmic transformation of variables to ensure that the information has a normal distribution. By
employing the logarithmic structure, the info is standardized which makes it more consistent with the
assumptions that underlie numerous statistical methods.

LCO2it = �0 + �1퐿퐺���� + �2퐿���� + �3퐿퐸���� + �4퐿퐹���� + �5퐿�푅���� + ��� . (5)

Empirical Methods
This study utilized the ARDL approach for data analysis to explore the correlation between CO2

emissions and several independent variables in the USA. To ensure robustness, the Fully Modified
Ordinary Least Squares (FMOLS), Dynamic Ordinary Least Squares (DOLS), and Canonical
Cointegration Regression (CCR) methods were additionally employed. Initially, the author performed
unit root tests (ADF, P-P, and DF-GLS) to verify stationarity. The properties of the time series data led to
the employment of the ARDL limits test. Subsequently, both short-term and long-term ARDL estimates
were derived, followed by the Pairwise Granger causality examination. Ultimately, multiple diagnostic
assessments were conducted, allowing us to find the most precise and effective econometric model
following a comprehensive evaluation procedure.

Unit root test
Performing a unit root testing is needed to avert erroneous regression analysis. This test can determine the
degree of integration [86]. The Dickey-Fuller Generalized Least Squares, [87] Phillips-Perron [88], and
Augmented Dickey-Fuller [89] unit root tests were used to see if the data set was stationary. In
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comparison to the Dickey-Fuller (DF) method, the Augmented Dickey-Fuller (ADF) technique is more
resilient and suitable for more complex procedures [90]. The DF-GLS test shows superior overall
performance regarding small sample size and power, surpassing the conventional Dickey-Fuller test [91].
Before employing the ARDL bound test estimator for cointegration analysis, it is essential to conduct the
ADF and PP unit root tests, as the estimator is applicable only when the variables are stationary at the
level or first difference [92].

ARDL technique
The ARDL technique, which includes the features of both distributed lag and autoregressive models, was
proposed by Pesaran et al. [93]. It is a comprehensive dynamic regression model that offers various
advantages over traditional cointegration methods. Firstly, the model allows for the integration of
variables to multiple orders, including order one, order zero, and even fractional integration, with the
exception of 1(2). Moreover, unlike previous cointegration approaches that necessitated prior
identification of a series' integration characteristic, this approach does not mandate any preliminary
validation [94]. Due to its efficiency, we can employ this methodology for data analysis in scenarios with
limited and small sample sizes [95,96]. Equation (6) can be used to represent the ARDL bound test:

ΔLCO2t = β0 + β1LCO2t−1 + β2LGDPt−1 + β3LAIt−1 + β4LENUt−1 + β5LFDIt−1
+ β6LURBAt−1 +

i=1

m
α1� ΔLCO2t−i +

i=1

m
α2� ΔLGDPt−i +

i=1

m
α3� ΔLAIt−i

+
i=1

m
α4� ΔLENUt−i +

i=1

m
α5� ΔLFDIt−i +

i=1

m
α6� ΔLURBAt−i + εt

(6)

Where, m is the optimum lag length. Pesaran et al. [93] suggest using critical values for both upper and
lower bounds to compare F-statistics. When the F-statistic surpasses the upper critical value, we reject the
null hypothesis (H0), indicating a persistent relationship. If the F-statistic stays below the crucial value,
we retain the null hypothesis (H0).The long-run coefficient estimate is derived from equation (7), which
also validates the cointegration of the parameters. It uses an approximation of the Error Correction Term
(ECT) to figure out short-term dynamic parameters based on long-term estimates [97]. The ECT is built
into the ARDL structure. The equation (7) outlines the ARDL long-run equation presented below.

ΔLCO2t = β0 +β1LCO2t−1 + β2LGDPt−1 +β3LAIt−1 +β4LENUt−1 + β5LFDIt−1
+β6LURBAt−1 +

i=1

m
α1� ΔLCO2t−i +

i=1

m
α2� ΔLGDPt−i +

i=1

m
α3� ΔLAIt−i

+
i=1

m
α4� ΔLENUt−i +

i=1

m
α5� ΔLFDIt−i +

i=1

m
α6� ΔLURBAt−i

+ΩECTt−1 + εt 7

Robustness Check
To evaluate the precision of ARDL outcomes, we utilized the FMOLS, DOLS, and CCR techniques. The
FMOLS approach is utilized to analyze a singular cointegrating relationship involving a combination of
integrated orders of I(1) variables. The primary objective of this method is variable transformation.
Phillips and Hansen [98] say that the FMOLS method fixes the problems with traditional cointegration
methods that make it hard to draw conclusions. This makes the estimated t-statistics for long-term
estimates more reliable. The DOLS technique may assist in integrating individual variables within a
cointegrated framework when faced with a mixed order of integration. The dependent variable is
calculated utilizing levels, leads, and lags as explanatory variables [99]. Nevertheless, as emphasized by
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Pesaran [100], the principal advantage of the DOLS prediction is its allowance for the varying order
integration of distinct components within the cointegrated framework. Additionally, Park [101] proposed
the CCR technique to examine cointegrating vectors within a model characterized by an integrated
process of order I(1). The model's characteristics exhibit a significant similarity to FMOLS.

Pairwise granser causality
The study employed the paired Granger-causality test, devised by Granger [102], to ascertain the
existence of a causal relationship among the factors. We can use F tests to assess Granger causality
between variables X and Y, and the OLS test for coefficient estimation. The symbols Xt and Yt denote
the values of the variables at time t, illustrating the time series for this variable pair. A bivariate
autoregressive model may exhibit the variables Xt and Yt.

Xt = β1 + i=1
n� αiYt-i + i=1

n� μiXt-1 + et (8)
Yt = β2 + i=1

n� ΩiYt-1 + i=1
n� ∞iXt-i + ut (9)

Here, the information criterion determines the "n" number of lags. The parameters used for the
assessment were β1, β2, αi, Ωi, μi, and ∞i.

Diagnostic test
The errors in Equation (7) must not exhibit serial correlation. This study employed various diagnostic
techniques to verify the normality, serial correlation, and heteroscedasticity of the data. Three tests are
needed in time series analysis to make sure that model assumptions are correct and that results are stable:
the Lagrange Multiplier (LM) test, the Jarque-Bera test [103], and the Breusch-Pagan-Godfrey test [104].
The Jarque-Bera test assesses the normality of residuals, a crucial step since many econometric models
require normally distributed errors for precise inference. The Lagrange multiplier test examines residuals
for serial correlation to verify that errors do not correlate with time, thereby preventing biased and
misleading estimates. The Breusch-Pagan-Godfrey test can yield inaccurate estimates and standard errors
due to heteroscedasticity, or the non-constant variance of residuals. The model's stability was assessed by
CUSUMSQ studies [105].

Results and Discussion
Table 2 lays out the descriptive statistics for the considered variables, derived from 32 observations. The
table provides the mean, standard deviation, minimum, and maximum values for six variables in the USA:
LCO2, LGDP, LAI, LENU, LFDI, and LURBA. All examined variables demonstrate positive mean
values, with LCO2 showing the highest mean. LFDI has a minimum value of 2.268, while LURBA has
the highest number.

Table 2. Summary Statistics.

Variable Obs Mean Std. Dev. Min Max
T 32 2005.5 9.381 1990 2021
LCO2 32 15.464 .08 15.279 15.569
LGDP 32 10.644 .319 10.081 11.159
LAI 32 7.506 1.036 6.321 9.724
LENU 32 4.77 .322 3.949 5.272
LFDI 32 2.625 .133 2.268 2.871
LURBA 32 19.5 .087 19.335 19.621
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Moreover, all variables have relatively small standard deviations, indicating a tight clustering of
data points around the mean with limited temporal variability. Table 3 presents the results of all
three stationarity tests (ADF, DF-GLS, and P-P) for log-transformed data in both level I(0) and first-
difference I(1) forms. In all three unit root assessments, it seems that only the urbanization variable is
stationary at level I(0), whereas CO2, GDP, AI innovation, energy consumption, and FDI were non-
stationary prior to examining their initial differences. This mixed sequence of integration prompts us to
proceed with the assessment immediately, using the ARDL methodology.

Table 3. Results of unit root tes.t

Variables ADF P-P DF-GLS Decision
I(0) I(1) I(0) I(1) I(0) I(1)

LCO2 -0.233 -3.941*** -0.231 -4.001*** -0.234 -3.991*** I(1)
LGDP -0.872 -4.091*** -0.782 -4.891*** -0.809 -4.091*** I(1)
LAI -0.704 -5.105*** -0.802 -5.323*** -0.756 -5.034*** I(1)
LENU -0.172 -5.011*** -0.177 -5.071*** -0.819 -2.150*** I(1)
LFDI -0.072 -4.108*** -0.065 -4.015*** -0.025 -4.342*** I(1)
LURBA -5.012*** -7.011*** -5.801*** -7.605*** -5.831*** -7.050*** I(0)

Standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1

This research employed the ARDL bounds testing approach to ascertain the presence of co-integration
among the variables. The F-statistic of 5.3421 is more than the critical value, indicating that the null
hypothesis of no co-integration is rejected at the 1% significance level. Therefore, we can argue that the
parameters of the model exhibit co-integrating relationships. This study cites urbanization, artificial
intelligence innovation, foreign direct investment, gross domestic product, and energy consumption as the
enduring driving forces. Furthermore, these factors necessitate the system's initial response to a typical
stochastic disturbance. In summary, variations in these three parameters influence CO2 emissions in the
United States.

Table 4. Results of ARDL bound test.

Test Statistic Value Signif. I(0) I(1)

F-statistic 5.3421 10% 2.07 3

k 5 5% 2.43 3.27

2.50% 2.81 3.84

1% 3.10 4.20

Table 4 and table 5 adopts the dynamic ARDL model to demonstrate the short- and long-term effects of
LGDP, LAI, LENU, LFDI, and LURBA on LCO2 in the USA. In terms of LGDP, a 1% boost in LGDP
will increase the LCO2 by 0.028% in the long-term run and 0.012% in the short run. This suggests that
economic expansion alone may notably contribute to environmental degradation in this setting, as GDP
has a positive impact on the CO2 emission level. A few studies have concluded that a boost in the GDP
has a negative impact on the environment. This includes Ahmed et al. [106] in Japan; Raihan and
Tuspekova [107] within Kazakhstan; Orhan et al. [108] on India; Ali et al. [109] in Malaysia; Shang et al.
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[58] for ASEAN countries. However, Le and Ozturk [110], Zhan et al.[111], Tufail et al.[112] and He et
al.[113] discovered the opposite outcome. They also concluded that economic pressures no longer
adversely affect the natural world. Likewise, Awosusi et al. [114] demonstrated that there is no significant
correlation between CO2 emissions and GDP in MINT economies.
On the other hand, the coefficients for LAI indicate a positive correlation with LCO2, implying a 0.054%
long-term fall and 0.076% short-term cut in LCO2 for every 1% rise in PAI. Thus, private investment in
artificial intelligence in the United States significantly contributes to environmental sustainability. AI
enhances energy efficiency and promotes environmental sustainability by decreasing carbon emissions.
Multiple researchers like Nishant et al. [37], Chen et al.[31] and Zhao et al.[115] support this result,
stating that AI technologies improve the environmental conditions in different regions. Moreover, Wang
et al. [116] discovered that invention patents exhibited no significant correlation with emissions decrease.
Conversely, LCO2 is negatively associated with LENU in both the long and short run, and this
relationship is statistically significant. These findings suggest that energy consumption has an adverse
impact on the USA ecosystem. Specifically, a 1% increase in LENU increases LCO2 by 0.617% in the
long run and by 0.321% in the short run. The utilization of energy results in increased carbon emissions,
as fossil fuels, the predominant energy source, emit substantial CO2 during combustion. This result is
consistent with the research of Islam et al. [117] in Bangladesh, Kim [118] in OECD countries, Nurgazina
et al. [119] in Malaysia, Akbota and Baek [120] within Kazakhstan, and Odugbesan and Adebayo [121]
in Nigeria. On the other hand, the findings of Namahoro et al. [122], Bhat [123], and Sharif et al. [4]
concluded that energy use can have a negative impact on the environment by increasing the pollution
level.

Table 5. Results of ARDL short-run and Long-run.

Variable Coefficient Std.
Error

t-
Statistic Prob.

Long-run Estimation

LGDP 0.028 0.5432 0.0771 0.010
LAI -0.054 0.0140 -2.3501 0.003
LENU 0.617 0.1177 1.4516 0.012
LFDI 0.018 0.0253 2.6532 0.014
LURBA 0.710 0.5406 2.0061 0.021
C 10.872 4.0321 3.0562 0.000

Short-run Estimation

D(LCO2(-1)) 0.517 0.1023 1.2054 0.041

D(LGDP) 0.012 0.3621 5.0452 0.000
D(LAI) -0.076 0.0054 -3.1802 0.025
D(LENU) 0.321 0.1072 2.5638 0.024
D(LFDI) 0.031 0.1892 -4.6723 0.000
D(LURB) 0.641 1.4912 2.6732 0.022

CointEq(-1)* -0.398 0.1040 -4.4572 0.003

Standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1
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Similarly, there is an unfavorable correlation between LFDI and LCO2, with each 1% increase in FDI
increases the CO2 emission by 0.018% in the long run and 0.031% in the short run. This result is
significant at the 1% level. One possible reason is that FDI frequently results in elevated industrial
activity, increased energy consumption, and intensified resource exploitation; hence, it amplifies
environmental deterioration. Nie et al. [124], and Zhang et al. [125] corroborate this result. Conversely,
Azam and Raza [126], Shah et al.[127], Pazienza [128] and Pradhan et al. [129] revealed that FDI can
mitigate CO2 emissions and improve biodiversity quality. Additionally, the positive and statistically
significant URBA coefficients indicate that both long-term and short-term increases in LURBA
negatively affect environmental quality. A 1% increase in URBA raises LCO2 by 0.710% in the long run
and by 0.641% in the short run. These findings suggest that the current urbanization structure in the
United States is not conducive to reducing pollution. Several researchers have also observed a similar
outcome, including Yuan et al. [130] in China, Ali et al. [131] in Pakistan, Anwar et al. [132] in Asian
economies, Sikder et al.[133] in developing economies, and Raihan et al. [71]. However, studies
conducted by Wang et al.[76], Acheampong [12], Zhu et al. [134], and Gasimli et al. [135] have
demonstrated that urbanization enhances environmental sustainability by reducing carbon dioxide
emissions.
The DOLS, FMOLS, and CCR techniques are supplementary methodologies utilized to evaluate the
validity and reliability of the ARDL results. Table 6 outlines the robustness findings.
In the FMOLS model, the coefficients for LGDP are statistically significant at the 1% level and have
positive values. A 1% increase in GDP causes the LCO2 to rise by 0.245%. Additionally, a 1% increment
in LAI leads to a 0.034% drop in CO2 emission in the USA. Furthermore, a 1% boosts in LENU and
LFDI and LURBA upsurges LCO2 by 0.074%, 0.053% and 0.231%, respectively. It indicates that GDP,
energy consumption, FDI and urbanization are not good for better for the ecosystem in USA. These
findings corroborate the ARDL short and long-run estimation results, with LGDP, LAI, LENU and LFDI
significant at the 1% level, while LURBA are significant at the 5% level. In the DOLS model, a 1% spike
in LGDP, LENU, LFDI and LURBA results in an average rise of 0.316%, 0.023%, 0.039%, and 0.143%
in LCO2, respectively. Similar to the ARDL findings, a 1% rise in LAI leads to a 0.010% reduction in
LCO2, and the coefficient for LAI is significant at the 5% level.
In the CCR model, a 1% increase in LGDP, LENU, LFDI and LURBA leading to an average rise of
0.217%, 0.354%, 0.049%, and 0.205% in LCO2, respectively. However, a 1% increase in LAI causes an
average 0.037% decrease in LCO2, confirming the ARDL results except for the LAI case. In this case all
the factors are significant at 1% level, while LURBA is significant at 5% thresholds. These robustness
checks confirm that the ARDL model's findings are reliable, as evidenced by the statistically significant
values across FMOLS, DOLS, and CCR computations.

Table 6. Results of Robustness check.

Variables FMOLS DOLS CCR

LGDP 0.245*** 0.316*** 0.217***

LAI -0.034*** -0.010** -0.037***

LENU 0.074*** 0.023*** 0.354***

LFDI 0.052*** 0.039** 0.049***

LURB 0.231** 0.143** 0.205**

C 10.342*** 10.052*** 10.034***

Standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1
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Table 7 presents the conclusions of causal relationships among several economic indices. An F-statistic of
3.38423 and a p-value of 0.0102 suggest that LLGDP does not cause Granger-cause LCO2. This indicates
the rejection of the null hypothesis asserting no correlation between the variables at the 1% significance
level. Also, p-values below the usual level of significance supported the finding that LAI, LENU, LFDI
and LURBA all had a single-direction effect on LCO2. Consequently, under these conditions, we dismiss
the null hypothesis, asserting the absence of causation. On the other hand, p-values higher than the usual
significance level showed that there was no significant causal relationship from LCO2 to LGDP, LAI,
LENU, LFDI and LURBA. The null hypothesis, which posits the absence of causality in these
interactions, is not effectively disproved.

Table 7. Results of Pairwise Granger Causality test

Null Hypothesis Obs F-Statistic Prob.

LGDP ≠ LCO2 30 3.8423 0.0102

LCO2 ≠ LGDP 0.7345 0.1203

LAI ≠ LCO2 30 3.0201 0.0073

LCO2 ≠ LAI 0.0123 0.8341

LENU ≠ LCO2 30 4.6512 0.0143

LCO2 ≠ LENU 0.6712 0.7612

LFDI ≠ LCO2 30 4.8061 0.0041

LCO2 ≠ LFDI 0.7623 0.0871

LURB ≠ LCO2 30 4.7032 0.0191

LCO2 ≠ LURB 0.4121 0.5412

The results of the diagnostic evaluation are shown in Table 8. The findings indicated that the efficacy of
all diagnostic techniques is negligible, and the null hypothesis remains indisputable. The Jarque-Bera test,
yielding a p-value of 0.4321, suggests a normal distribution of the residuals. The Lagrange multiplier
analysis indicates the absence of serial correlation in the residuals, yielding a p-value of 0.1021. Finally,
the Breusch-Pagan-Godfrey test indicates that the residuals do not display heteroscedasticity, yielding a p-
value of 0.1283.

Table 8. The results of diagnostic tests
Diagnostic tests Coefficient p-value Decision
Jarque-Bera test 1.2034 0.4321 Residuals are normally

distributed
Lagrange Multiplier test 1.0982 0.1021 No serial correlation exits
Breusch-Pagan-Godfrey test 0.0452 0.1283 No heteroscedasticity exists

Furthermore, we use the CUSUM and CUSUM-SQ statistics to seek structural stability in residuals over
long and short periods. The CUSUM-SQ plot stays on the critical line, as indicated in the figure 1,
indicating that the results are within the critical limits. This shows that the parameters are satisfactory and
consistent at the 5% level of significance.
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Figure 1. (A) CUSUM test for structural stability in residuals, (B) CUSUM of squares test for
structural stability in residuals.

Conclusion and Policy Implications
This paper thoroughly examines the impact of AI innovation, economic growth, foreign direct investment,
energy consumption, and urbanization on CO2 emissions in the USA from 1990 to 2022. Combining the
ARDL framework with the STIRPAT structure, the authors found that while AI innovation reduces stress
on the environment, economic growth, energy use, foreign direct investment, and urbanization make these
problems worse. The results of the ADF, PP, and DF-GLS tests show that the variables have different
levels of integration and no unit root problems. The ARDL boundaries test offers additional evidence of
co-integration, signifying solid long-term interactions. The ARDL findings show a positive correlation
between AI innovation and CO2 emissions in the USA, suggesting that AI technologies improve
environmental health as long as appropriate environmental safeguards are in place. In contrast, the
adverse correlations among GDP, ENU, FDI, URBA, and CO2 emissions indicate that these elements lead
to detrimental environmental consequences. Significant technological advancements, including energy
conservation, sustainable foreign direct investment, and urban planning, may stimulate new concepts and
the implementation of environmentally friendly practices by enhancing competitiveness and facilitating
access to advanced technologies. Robustness checks using FMOLS, DOLS, and CCR enhance the
credibility of the ARDL results, thereby increasing their trustworthiness. Another thing is that Pairwise
Granger causality tests show strong one-way links between LCO2 and LGDP, LAI, LENU, LFDI, and
LURBA. These linkages highlight the significant impact of economic transformations, private
investments in AI, and advancements in green energy utilization on ecological sustainability dynamics in
the USA. The research suggests various policy measures to promote sustainable economic growth in the
United States, including the use of foreign direct investment, technological advancements, the
implementation of green energy, and the development of sustainable urban infrastructure.

The findings emphasize the need for targeted policies to balance economic growth with environmental
sustainability. Promoting AI-driven technologies and green energy initiatives can reduce CO2 emissions
while fostering innovation. Policies should prioritize sustainable foreign direct investment (FDI) by
incentivizing eco-friendly projects and encouraging energy-efficient practices. Urban planning reforms
must focus on developing smart, sustainable cities to mitigate the environmental impacts of urbanization.
Additionally, integrating AI in energy management and industrial processes can enhance efficiency and
reduce environmental stress. These measures collectively support sustainable economic growth while
safeguarding ecological health in the USA.
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