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Abstract
The current paper investigates the influences of AI innovation, GDP growth, renewable energy
utilization, the digital economy, and industrialization on CO2 emissions in the USA from 1990 to 2022,
incorporating the ARDL methodology. The outcomes observe that AI innovation, renewable energy
usage, and the digital economy reduce CO2 emissions, while GDP expansion and industrialization
intensify ecosystem damage. Unit root tests (ADF, PP, and DF-GLS) reveal heterogeneous integration
levels amongst components, ensuring robustness in the ARDL analysis. Complementary methods
(FMOLS, DOLS, and CCR) validate the results, enhancing their reliability. Pairwise Granger causality
assessments identify strong unidirectional connections within CO2 emissions and AI innovation, as
well as the digital economy, underscoring their significant roles in ecological sustainability. This
research highlights the requirement for strategic actions to nurture equitable growth, including
advancements in AI technology, green energy adoption, and environmentally conscious industrial
development, to improve environmental quality in the United States.
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Introduction
The importance to ecological conservation and sustainability has attained unparalleled prominence
[1,2]. Carbon dioxide (CO2) is a prevalent greenhouse gas (GHG) that retains surface heat in the
atmosphere, inhibiting its escape into space and contributing to the rise in global temperatures [3,4,5].
This has prompted countries and international organizations to seek global solutions for reducing
carbon emissions and addressing climate change [6,7] . Recently, the USA, the second-largest producer
of GHGs in 2017, has a target to reduce GHG emissions by around 27% by 2025, relative to 2005
emission levels [8].The US was selected based on several compelling factors. People regard the United
States as the leading entity in energy usage. From 1980 to 2019, quantities of carbon monoxide, lead,
and sulfur dioxide decreased by almost 80 percent; the particles had comparable reductions, although
the surface levels of ozone diminished by about one-third [9,10]. The country uses the highest amount
of renewable and non-renewable resources for each resident [11,12]. In 2020 the United States released
emissions totaling 5,416 metric tonnes of CO2 which constituted approximately 16% of worldwide
emissions [13]. AI research among nations ranks both China and United States as major global forces
in AI development [14]. The USA faces consider obligation in the ecological emergencies and rising
temperatures because it ranks as one of the top greenhouse gas manufacturers worldwide thus assessing
its environmental sustainability stands as a critical matter. It is essential to recognize the importance of
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economic growth, energy consumption, industrialization, AI innovation, and the digital economy,
especially for a developing nation like the USA. The research drives from global climate crisis
demands to reduce CO2 emissions yet maintain economic development and advancing technology. As
one of the top economies worldwide the United States requires methods to support industrial growth
along with digital expansion while achieving lower ecological influence. This study investigates CO2

emission effects from AI innovation together with digital economy power and renewable energy and
traditional factors of GDP growth and industrial development. The relationships between these factors
remain essential to create policies which support sustainable economic progress. The research bases its
analysis on the ARDL framework by using tests for unit roots along with causality assessments for
confirming the findings. This research provides policymakers with essential knowledge about AI
innovations along with digital economies as emission reduction agents before examining the
detrimental environmental effects of uncontrolled economic expansion and industrialization. These
results demonstrate the necessity of directing financial resources towards sustainable AI applications
and green energy transformation and environmentally friendly industrial expansion. The research
findings contribute to environmental economic scholarship while giving the United States specific
policies to reach sustainable ecological and economic harmony.
Studies indicate that both environmental resource depletion and the climate change crisis have
strengthened the immediate need for energy efficiency advancements [15]. As the world's primary
contributor, the United States assumes a fundamental part in bringing global carbon emissions to zero
by 2050 by working to solve the upcoming climate emergency during the present and future times
[16,17]. Habitable planet preservation relies on advancing social development and economic conditions
together with renewable energy source expansion [18,19]. The Biden administration presents a $2
trillion plan for renewable energy development while enhancing infrastructure and conducting various
climate-dependent projects to achieve net-zero emissions by 2050 [20]. Furthermore, the United States
offers substantial fossil fuel subsidies, totaling approximately 0.6 trillion USD, making it the second-
highest globally. To attain carbon neutrality by diminishing fossil fuel consumption, it is imperative to
curtail policy support [21]. Moreover, the United States must promptly reduce its CO2 emissions by
employing carbon capture technologies at power and industrial sites, in conjunction with geological
storage solutions [22,23].
Theoretically, the link within the digitalized economy and environmental quality is complex and
multifaceted. Digital transformation enhances ICT utilization; thereby imposing greater environmental
strain through increased energy consumption is related to the manufacturing, and usage of ICT-related
items [24]. Enhancing economic growth is the foremost priority for many nations, particularly
developing and developing region, to improve their citizen’s quality of life [25]. Despite the benefits,
heightened industrial productivity is the primary contributor to trash generation and energy
consumption [26]. In 2020, the digital economy of the USA amounted to US$13.6 trillion [27]. The
prevailing perspective posits that economic expansion adversely impacts the environment during the
initial phases of development and then benefits it in later stages [28,29,30]. Public opinion toward these
issues parallels the way people respond to climate change since the observable pattern represents an
unavoidable trend [31]. Throughout the past 50 years, academic scientists have resurfaced their interest
in AI research [32]. It can be anticipated that artificial intelligence will significantly impact global
environmental outcomes, productivity, inclusivity, and equity. The influence of AI on sustainable
development has been ambiguous. Artificial intelligence (AI) has developed as a formidable instrument
across various industries and presents significant potential for government, society, and the economy
[33].
The primary aim is to analyze the implication of GDP, the digital economy, clean power usage,
industrialization and AI innovation on CO2 emission levels in the USA from 1990 to 2022. After a
comprehensive examination of current academic literature, we assert the innovative nature of this
research study, substantiated by several foundational ideas. This research presents three notable
contributions: Currently, academic research has not specifically analyzed the consequences of green

http://www.jspae.com


Journal of Environmental and Energy Economics

Science Research Publishers 3

energy utilization, the digital economy, and AI innovation on CO2 emissions in the USA, despite the
country's crucial function in the climate change agenda. The USA merits specific scrutiny in the
analysis owing to its position as a highly industrialized country that utilizes substantial natural
resources, hence imposing considerable environmental strain. Consequently, the USA ranks as the
second-highest polluter of CO2 [34]. The data indicates that the USA possesses considerable potential
to enhance its energy portfolio by using renewable energy sources. Therefore, the USA's carefully
designed and judicious nuclear energy policy could successfully mitigate its air pollution challenges in
the near future. Furthermore, we scrutinize the link within industrialization and biodiversity condition.
Unlike previous researches, this analysis employs a newly developed econometric technique known as
ARDL simulation. The extended IPAT models, which incorporate renewable energy, AI innovations,
and a digitalized economy, employ this technique. This methodology obtains, activates, and
autonomously produces charts that show misleading changes in the endogenous factor based on the
exogenous variable, all while accounting for other elements.
In the second part, we look at research that has been done on certain factors by looking at methodology,
theoretical frameworks, the building of empirical models, and the estimation methods that were used. A
thorough breakdown of the model results appears in "Results and Discussion," and the final segment
covers the analysis together with the proposed action.

Literature Review
Numerous empirical studies investigate how the three factors of GDP growth, industrialization, and
sustainable power usage affect CO2 emission levels. Various studies have analyzed the ARDL model,
yet most of them examine how GDP growth, together with urbanization and renewable energy
consumption, drives environmental outcomes. Most individuals fail to notice how AI technology,
together with the digital economy, affects environmental contaminations. There is limited previous
research on ecological deterioration in the United States because this field is new to scientific
investigation. Previous research enabled the inquiry to choose variables and methodologies while
conducting its study. The subsequent part of this work examines multiple query points.

GDP and CO2

Many research activities concentrate on the link between growing GDP and biodiversity health. Many
experts hold the position that GDP growth usually leads to higher CO2 emission levels. The analysis of
environmental quality using CO2 emissions records complicates the current situation. The study of
economic growth's (GDP) effect on China's environmental sustainability uses ARDL methodology
according to Raihan et al. [35]. Data collected from multiple sources show that the expansion of
national economies causes strong increases in CO2 emissions. Sheraz et al. [36] conducted research on
G20 carbon dioxide emission responses to GDP variables from 1986 to 2018. Results obtained through
the FE-OLS method demonstrated that GDP led to an upsurge in CO2 releases throughout the examined
period. Koengkan et al. [37] established through their research that economic progress leads to
deterioration of environmental quality. Aslam et al. [38] presents an investigation of industrialization as
well as its impact on CO2 emissions when coupled with GDP growth. The research evaluates the
environmental Kuznets curve by establishing that per capita GDP drives CO2 emissions increases over
time Findings by Raihan et al. [39] and Sikder et al.[40] together with Abbasi et al.[41] and Magazzino
et al.[42] showed parallel outcome. Using ARDL modeling throughout 1977 to 2016 Solarin et al. [43]
discovered that Nigerian economic growth inflicts damage on the environment in the beginning but
eventually shows favorable consequences. Mohsin et al. [44] studied the ecological and economic
relationship in European and Central Asian regions. Analysis through ARDL technique demonstrated
that CO2 emissions and GDP show an opposite sustained link and a positive short-term connection thus
indicating GDP expansion damages the ecosystem.
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AI innovation and CO2

The significant impact of AI technologies, such as machine learning (ML), deep learning (DL), and big
data, can improve environmental quality by decreasing pollutant levels [45]. The global economy faces
huge strain from ecological issues and the need for more durable infrastructure, making the integration
of AI, ML, and DL in manufacturing operations a crucial component of a comprehensive strategy to
adhere to long-term sustainability goals [46, 47]. As research progresses, certain researchers have
identified the possible environmental ramifications of AI [48,49,50]. Vinuesa et al. [51] examined the
effects of AI on the 17 goals and 169 specific targets specified in the UN’s “2030 Agenda for
Sustainable Development,” demonstrating that AI can aid in the realization of the majority of these
targets. Dhar [52] examined the dual function of AI in CO2 emission reduction, emphasizing its
position as both a means to combat global warming and a notable source of carbon
emissions. Moreover, Chen et al. [53] found that the impact of AI innovation on reducing CO2

emissions is more pronounced in large cities, major urban areas, well-developed infrastructure, and
technologically advanced cities, based on 270 Chinese cities.

Renewable Energy use and CO2

The long-term cost benefits of alternative or green energy sources will enhance the general standard of
living [54]. Environmental disasters arose from increasing fossil fuel usage so green power needs to
replace them to protect ecosystems and obtain secure reliable power [55]. Energy efficiency methods
work for ensuring green ecosystem and develop equitable growth through the deployment of
sustainable and clean energy resources [56]. Baloch et al. [57] analyzed the connection within
renewable energies and CO2 emissions in BRICS countries by using the AMG estimator from 1990 to
2015. Research findings demonstrated that clean energy caused decreased CO2 emissions throughout
the entire BRICS coalition except for South Africa. Dogan and Ozturk [58] study the implication of
renewable and non-renewable energy utilization on CO2 emissions throughout the 1980-2014 periods
in the United States. Research findings demonstrate that raising renewable energy usage creates
effective reduction of environmental harm throughout extended periods. A research conducted by
Salahuddin et al.[59] focused on SSA countries and Kartal et al.[60] worked with USA while Dagar et
al. [61] did their study with the OECD economies all reaching similar findings. Numerous
experimental studies show renewable energy implementation produces minor effects on CO2 emissions
while producing possible adverse environmental consequences from increased GHG output. The
research by Apergis and Payne [62] demonstrates that renewable energy technology failed to reduce
emissions within a short-term period across 19 developing economies and industrial nations. In the
short term Farhani [63] finds that REN output creates a causal link to CO2 emissions yet this effect
disappears in the long term. Several studies demonstrate renewable energy utilization brings adverse
effects to ecosystems according to Murshed et al.[64] in G-7 countries as well as Abbas et al. [65] in
BRICS region and Silva et al.[66] in Africa.

Digital Economy and CO2

The modernization of the nature hypothesis demonstrates how digital technological advancement offers
solutions to ecological problems while producing theoretical analysis for digital economy-based
sustainability [67]. The paper of Wang et al. [68] introduces a multifaceted digital economy index that
tracks Chinese provincial data from 2006 to 2017 while studying digital commerce connections with
levels of CO2 emissions. Through their analysis, which used system-GMM, they found evidence that
DE operations create negative effects on CO2 emissions. Ma et al. [69] examined China's digital
economy capability for minimizing pollutants. The study indicates that the DE of China plays a
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substantial role in reducing CO2 emissions. The digital economy emerges as both a promising and
innovative environmental sustainability strategy because of rising environmental awareness and a
growing economic need for sustainable solutions [70]. Shobande and Ogbeifun [71] replicated the
findings along with Kovacikova et al. [72] in their own regional studies. Xu et al. [73] explored the
current and quantitative patterns that relate the DE to natural world throughout China's 287 prefecture-
level cities from 2008 to 2018. Research outcomes demonstrate that the relationship between the DE
and ecological damage runs in reverse directions as it displays complex spatial and temporal patterns.
According to Nguyen et al. [74], the increasing scale of economic activities facilitated by the DE
increases environmental emissions by using more energy. Research by Li and Wang [75] established
that the correlation between the DE and CO2 releases followed an inverted U pattern.

Industrialization and CO2

The detailed linkage between industrial development and biodiversity reduction became a major topic
when nations aim to expand their economic base without causing environmental deterioration. In their
study Sumaira and Siddique [76] investigated how industrialization creates cause and effect patterns
with CO2 emissions which operate in both directions. The investigations took place in the SAARC area
from 1984 to 2016. Through their analysis Ahmed et al. [77] evaluated how industrialization affects
environmental condition in the Asia-Pacific region. The results using ARDL methods showed that
industrial growth has a major beneficial impact on environmental conditions. Opoku and Aluko [78]
conducted research that analyzed various environmental results of industrialization from 2000 to 2016
across 37 African nations. The researchers established that national industrial growth decreases
environmental destruction. Sikder et al. [40] investigated emissions based on industrial development
among 23 developing nations during the period from 1995 to 2018. According to the ARDL model
industrialization grows by 0.54% when CO2 emissions increase by 1% throughout the long-term period.
Research by Nasir et al. [79] investigates ecological damage elements in Australia throughout the
1980-2014 periods. Their analysis using EKC and STIRPAT adopted complete framework to
demonstrate that industrial development shows no significant link with CO2 emissions. Mentel et al.[80]
researched Africa while Kermani et al. [81] investigated Iran, Xu and Lin [82] studied China and
Farooq et al.[83] analyzed India and all these studies demonstrated that CO2 emissions rise because of
industrial growth and harm environmental health.

Literature Gap
The research addresses critical information deficiencies by examining the United States and its distinct
macroeconomic and environmental attributes. Despite the global focus on equitable growth, there have
been limited, thorough studies conducted in the USA that investigate the cumulative implication of
industrialization, AI innovation, and the digital economy on carbon intensity. Comprehensive
assessments of the complex interrelations among these factors are frequently absent in the current
literature, especially with the ARDL framework. Conflicting findings continue on the relationship
among DGE, AI innovation, and CO2 emissions, despite earlier research acknowledging the necessity
for more thorough examinations of these associations. It is essential to recognize that technical growth,
along with the adoption of alternative energy and a digital economy, can promote the utilization of
cutting-edge, environmentally friendly technologies, thereby facilitating a sustainable world. Therefore,
the objective of the article is to address these inadequacies and provide policymakers with essential
data to develop sustainable plans for decarbonizing emissions.

Methodology
Data and Variables
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This analysis utilized time series data from 1990 to 2020 for the United States. The World
Development Indicator (WDI) supplied the data on CO2 emissions, which is employed as an
endogenous variable. Likewise, information regarding AI innovation and the digital economy is
sourced from Our World in Data. Furthermore, the statistics on GDP, renewable energy utilization, and
industrialization are sourced from WDI. Table 1 distinguishes the factors, their logarithmic forms, units
of measurement, and sources of data.

Theoretical framework
Dietz and Rosa [84,85] developed a revised "Stochastic Impacts by Regression on Population,
Affluence, and Technology" (STIRPAT) model to resolve problems with IPAT format [86]. The
method predicts irregular functional connections between variables which affect the ecosystem
environment [87]. The STIRPAT model enables researchers to add extra independent factors like
energy usage when tracking environmental influences [88]. The basic model structure appears in
Equation (1).

� ≡ �.�.�…………………………… (1)

In this case, "P" denotes population number, "A" denotes wealth, "T" denotes advances in technology,
and "I" denotes an ecological impact. Researcher examines the following formulation:

�푖� = ��푖�
�1�푖�

�2�푖�
�3�푖�………………………………. (2)

Table 1. Data and variables
Variables Description Logarithmic Form Unit of

Measurement
Source

CO2 CO2 Emission LCO2 CO2 Emission (kt) WDI
GDP Gross Domestic

Product
LGDP GDP per capita

(current US$)
WDI

AI AI Innovation LPAI Estimated
Investment in AI
(US$)

Our World in Data

REN Renewable
Energy Use

LREN Renewable
Energy Use (% of
total energy use)

WDI

DGE Digital Economy LDGE ICT good imports
(% of total goods
imports)

Our World in Data

INDUS Industrialization LINDUS Industry
(including
construction),
value added
(current US$)

WDI

The logarithmic transformation can stabilize data, compress variable scales, and reduce model
heteroscedasticity and collinearity while maintaining data structure and correlation. Understanding unit
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differences in factors affecting carbon intensity is crucial for the research topic. Equation (3) presents
the logarithmic representation.

퐿��푖� = �+ �1퐿��푖� + �2퐿��푖� + �3퐿��푖� + �푖�………………… (3)

In this context, P symbolizes the population of a nation, A its affluence, and T its technology at time t.
The random error component is denoted by ε, while the constant component in the STIRPAT
methodology is C. Eqn.(4) is the mathematical framework for this study:

��2푖� = �(퐺��푖�,��푖�,푅��푖�,�퐺�푖�, �����푖�)……………….... (4)

The explanatory variables in this instance are GDP, AI innovation, renewable energy use, digital
economy and industrialization whereas the dependent variable is CO2 emission. An alternate way to
describe the empirical model in logarithmic form is as follows:

퐿���2푖� = �0 +�1퐿�퐺��푖� +�2퐿���푖� +�3퐿�푅��푖� +�4퐿��퐺�푖� +
�5퐿������푖� + �푖�……………………. (5)

Here, �0 to �5 is used as the coefficient of five different selected independent variables.

Empirical Framework
The fundamental purpose of this inquiry analyzes the connection among AI innovation and GDP
growth, industrialization and digital economy and energy usage on CO2 emissions in the USA region.
The research study will execute the following sequence of steps towards its objective. Tests including
ADF and P-P and DF-GLS were used to perform unit root examinations. We utilize ARDL modeling to
discover the connection patterns in the variables both in the short and long term. The robustness tests
were done with various techniques which included FMOLS and DOLS and CCR. Multiple diagnostic
assessments were also applied to confirm that the model contained no disturbing factors.

Unit Root Test
It is imprudent to check the stability of the data prior to examining any correlations between the eras
[89]. Whether the dataset exhibits stationarity in integrated order zero (I(0)) or integrated order one
(I(1)), the current study first examines the links between the response and its independent factors. The
evasion of the I(2) sequence is considered invalid and may lead to erroneous results [90]. This study
employs the ADF test [91], DF-GLS test [92] and PP test [93] to assess the stability of the variables.

ARDL Structure
Pesaran et al. [94] introduced the ARDL limits analysis as a cointegration method that we used for
assessing the lasting associations between factors. The cointegration test provides superior sequencing
of integration when compared to traditional methods. This analytical method applies when parameters
demonstrate I(1) and I(0) stability or an I(1)/I(0) combination status [95]. The ARDL framework
determines cointegration through the ARDL F-statistic which computes its results using variable lag
structures optimized for individual variables [96]. Cointegration between the parameters becomes
evident when the values of the ARDL F-statistic exceed the predefined upper threshold. The absence of
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cointegration exists among the variables when the ARDL F-statistic falls beneath the lower critical
boundary [97]. Eq. (6) applies the ARDL bound analysis to determine cointegration.

ΔLCO2t = τ0 + τ1LCO2t−1 +τ2LGDPt−1 + τ3LAIt−1 +τ4LRENt−1 +τ5LDGEt−1
+τ6LINDUSt−1 +

i=1

q
γ1� ΔLCO2t−i +

i=1

q
γ2� ΔLGDPt−i +

i=1

q
γ3� ΔLAIt−i

+
i=1

q
γ4� ΔLRENt−i +

i=1

q
γ5� ΔLDGEt−i +

i=1

q
γ6� ΔLINDUSt−i + εt

(6)

where Δ is the first difference operator, and q indicates the length of the lag that is optimal.

The ECM method produces consistent outcome even with comparatively small samples [98]. The ECM
amalgamates short-term nuances with long-term stability to maintain a comprehensive perspective [99].
The symbol θ represents the coefficient of ECM. Equation (7) is used to explore short run associations
of the variables.

ΔLCO2t = τ0 + τ1LCO2t−1 +τ2LGDPt−1 + τ3LAIt−1 +τ4LRENt−1 +τ5LDGEt−1
+τ6LINDUSt−1 +

i=1

q
γ1� ΔLCO2t−i +

i=1

q
γ2� ΔLGDPt−i +

i=1

q
γ3� ΔLAIt−i

+
i=1

q
γ4� ΔLRENt−i +

i=1

q
γ5� ΔLDGEt−i +

i=1

q
γ6� ΔLINDUSt−i

+θECMt−1 + εt

(7)
Robustness Check
The study evaluated ARDL results through alternative cointegration regression methods that included
FMOLS by Hansen and Phillips [100] as well as DOLS methodology by Stock and Watson [101] and
CCR test by Park [102]. The adoption of these methods emerged because of two main requirements
[103]. The I(1) parameters need to exhibit cointegration before implementing any of FMOLS, DOLS,
or CCR methods. The application of these methods produces consistent parameters while using small
sample sizes in testing. The methods address endogeneity and serial correlation and omitted variable
bias and measurement errors of parameters. The results produced by these methods become more and
more efficient as the sample size increases [104].

Pairwise Granger Causality Test
The research utilized Granger-causality test developed by Granger [105] to verify connections among
its components. The concept stands as a predictive statistical procedure that brings multiple benefits
compared to other approaches when working with time series data [106]. This test provides the crucial
benefit of simultaneous analysis of multiple lags by reducing the impact of elevated lag orders [107]. A
time series Y demonstrates "Granger-causality" to another time series X through its ability to enhance
future prediction of X values. At time t the time series values for both variables are denoted by Xt and
Yt. The bivariate autoregressive model successfully demonstrates how the variables X and Y operate.
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Xt = β1 + i=1
n� αiYt-i + i=1

n� μiXt-1 + et
(8)

Yt = β2 + i=1
n� ΩiYt-1 + i=1

n� ∞iXt-i + ut
(9)

Diagnostic Tests
The research employed diagnostic assessments such as the Jarque-Bera test, Lagrange Multiplier test,
and Breusch-Pagan-Godfrey test to verify model assumptions and guarantee robust outcomes. The
Jarque-Bera test evaluates the normality of residuals, whereas the Lagrange Multiplier test identifies
serial correlation within residuals. The Breusch-Pagan-Godfrey test assesses heteroscedasticity, which
may result in erroneous estimates and standard errors. Mitigating heteroscedasticity enhances model
precision and inference dependability.

Results and Discussion
Summary Statistics
Table 1 contains descriptive statistics that have been presented as a summary. The evaluation and
analysis of collected data reveal identical median and mean values across all variables. The distribution
of all variables remains normal because their skewness approaches zero points and kurtosis stays below
3 while their Jarque-Bera test statistics fall under their thresholds.

Table 02: Summary statistics.
Variable Obs Mean Std. Dev. Min Max
T 34 2003.676 11.726 1990 2021
LCO2 34 10.376 .732 9.29 11.472
LGDP 34 6.402 .72 5.145 7.807
LPOS 34 -.985 .428 -1.864 -.371
LEDU 34 .627 .123 .355 .798
LFDI 34 19.031 2.589 14.145 21.764
LPOP 34 18.708 .2 18.105 18.948

Unit Root test
The analysis shows the stationarity findings of unit root test using both I(0) and I(1) first-difference
forms in Table 03. It indicates that industrialization serves as the sole variable showing stationarity at
level I(0) while CO2, GDP, AI innovation, green power utilization and digital economy exist in non-
stationary form before subtracting the first differences. The differently integrated series require us to
initiate assessment then proceed with applying the ARDL modeling framework.

Table 3. Results of unit root test.
Variables ADF P-P DF-GLS Decision

I(0) I(1) I(0) I(1) I(0) I(1)
LCO2 -0.644 -4.647*** -0.625 -4.014*** -0.427 -4.302*** I(1)
LGDP -0.732 -4.271*** -0.740 -4.739*** -0.761 -3.051** I(1)
LAI -0.502 -4.615*** -0.597 -4.523*** -0.872 -3.365** I(1)
LREN -1.321 -4.321*** -1.034 -4.320*** -1.431 -4.623*** I(1)
LDGE -1.025 -5.713*** -1.011 -5.166*** -0.806 -4.453*** I(1)
LINDUS -4.340*** -5.787*** -4.120*** -4.243*** -4.981*** -5.462*** I(0)
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Table 4. Results of ARDL bound test.
Test Statistics Value K
F statistics 5.0348 5
Significance level

Critical Bounds 10% 5% 2.50% 1%
I(0) 1.98 2.29 2.60 2.98
I(1) 3.01 3.24 3.71 3.99

ARDL bound test
Following the verification of the variable's unit roots, this investigation employed the ARDL bounds
test to examine the nature of the long-term relationship between the variables. Table 4 presents the
empirical findings derived from the ARDL-limits testing methodologies for cointegration. The
calculated F-statistic (5.10348) was higher than the upper critical bound values. This means that there
was long-term cointegration within the selected factors.

ARDL result
Table 5 utilizes the ARDL model to examine short-term and long-term influences of LGDP, LAI,
LREN, LDGE, LINDUS on LCO2 found within the United States. A 1% boost in LGDP leads to a rise
of 0.332% in LCO2 levels during the long-term period along with a short-term impact of 0.142%. The
findings demonstrate that rising GDP levels produce increased CO2 emissions because financial growth
brings about more manufacturing operations and energy consumption and asset deployment. Several
researchers have shown that economic expansions through increased GDP production create negative
environmental consequences. Research evidence supporting this connection can be found in
publications by Voumik and Sultana [108] Majeed et al. [109] Kirikkaleli et al.[110] and Qayyum et
al.[111]. Research from Zubair et al.[112], Ali et al.[113], Halliru et al.[114] opposed the positive
connection within GDP and CO2 emission. A 1% boost in LAI causes to a decline of LCO2 in both time
scenarios by 0.115% and 0.076%. The use of AI technologies in the United States generates substantial
environmental sustainability benefits based on these research findings. Thus the research from
Cifuentes et al.[115], Ridwan et al.[116], Ham et al.[117] alongside Chattopadhyay et al.[118] shows
that customized AI techniques must be developed to foster global sustainability goals. Moreover, Awan
et al.[119] shows innovation leads to increased pollution while recommending the adoption of
pollution-minimized technologies. The analysis shows that LREN positively affects LCO2 in both time
periods with confirmed statistical importance. The USA ecosystem benefits from renewable energy
consumption according to the research findings. The relation between LREN and LCO2 demonstrates
that LCO2 decreases by 0.193% in the long term and by 0.102% in the short term when there is a 1%
increase in LREN. Green energy offers a substitute for fossil fuels through environmentally friendly
sustainable power technologies that produce negligible greenhouse gas emissions. The research
findings of Sharmin [120] support the findings alongside those of Waheed et al.[121] and Sharif et
al.[122]. According to Silva et al.[66] and Yurtkuran [123] and Lee [124] researchers reported negative
correlations between clean energy usage and pollutant level in African countries as well as Turkey and
European economies respectively.
At the same way, there is a favorable link within LDGE and LCO2, with each 1% increment in DGE
mitigates the CO2 emission by 0.057% over time and 0.061% immediately. It is significant 1% level
and indicating that DGE is beneficially for the ecosystem of the USA. The digital economy leads to
reduce CO2 emissions by fostering energy-efficient innovations and decreasing the reliance of
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conventional industrial operations. Shahbaz et al.[125] and Song et al.[126] corroborated with this
conclusion . However, Kuntsman and Rattle [127] assert that digital devices have inflicted significant
harm on the ecosystem throughout the manufacturing, preservation, and disposal processes. Similarly,
Guo and Liang [128] and Ozturk and Ullah [129] observed same conclusions. Statistical analysis shows
that both time frames LURBA growth negatively affects environmental quality according to the
LINDUS coefficients. Additional levels of LINDUS result in a 0.7182% increase in LCO2 within the
long-term period while generating a 0.204% rise in the short term. Due to higher energy use and
reliance on petroleum and natural gas in manufacturing operations, modernization most likely results in
more CO2 emissions. Multiple research studies including Sikder et al.[40], Mahmood et al.[130], Khan
et al.[131] illuminated how industrialization harmed natural world health. Industrialization achieves
environmental sustainability through decreased CO2 releases according to studies performed by Zafar
et al.[132], Pong et al.[133] and Elfaki et al.[134].

Table 5. Results of ARDL short-run and Long-run.
VARIABLES LR SR
LGDP 0.332***(0.4321)
LAI -0.115***(0.0313)
LREN -0.193***(0.3412)
LDGE -0.057**(0.5431)
LINDYS 0.182***(0.1337)
D.LGDP 0.142**(0.4534)
D.LAI -0.462***(0.0074)
D.LREN -0.102***(0.1540)
D.LDGE -0.061***(0.0074)
LINDUS 0.204***(0.5464)
ECT (Speed Adjustment) -0.243***(0.6512)
Constant 10.910***(11.2423)
R-square 0.8950

Robustness Check
The results of the ARDL test are confirmed by three other methods, shown in Table 6: DOLS, FMOLS,
and CCR. The coefficients from the FMOLS analysis show statistical significance at the 1% level
while producing positive values. A single percentage increment of GDP triggers a 0.443% boost in CO2

emission levels. When LAI increases by one percentage point, the USA experiences a decrease of
0.145 percent in CO2 emissions. A 1% increase in LREN together with LDGE can reduce LCO2 by
0.253% and 0.027%, respectively. The relationship between LCO2 and LINDUS shows a positive trend
because elevating LINDUS by 1% generates a 0.168% increase in CO2 emissions. The results confirm
that both GDP growth and industrial development produce damaging impacts on the natural
environment of the USA. The findings match those obtained from both the short-term and long-term
ARDL estimations.
The DOLS model indicates that LCO2 increases by 0.315% and 0.671% on average when LGDP and
LINDUS rise by 1%. The CO2 emission levels decrease by 0.156% when LAI increases by 1% along
with equivalent increases of 0.258% from LREN and 0.068% from LDGE. According to the CCR
analysis, LGDP, LINDUS, and LDGE have effects on LCO2 changes that are, on average, 0.136%,
0.045%, and 0.096%. LCO2 decreased by an average of 0.341% and 0.236% per 1% rise in LAI and
LREN, respectively, which matched the ARDL results except for the LAI data. This model confirms
the significance of all components at the 5% level with an additional 1% level of significance for
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LGDP, LREN, and LINDUS. The results from all three assessments demonstrate that the ARDL model
reaches reliable conclusions about the data patterns.

Table 6. Results of Robustness Check
Variables FMOLS DOLS CCR
LCO2 dependent
LGDP 0.443***(0.8623) 0.315**(0.4352) 0.136***(0.4526)
LAI -0.145***(0.0562) -0.156**(0.0731) -0.3413**(0.0762)
LREN -0.253***(0.1718) -0.258***(0.5214) -0.236***(0.1345)
LDGE -0.027**(0.0823) -0.068*(0.6720) 0.045**(0.0820)
LINDUS 0.168**(0.2345) 0.671**(0.4591) 0.096***(0.8327)
C 10.708**(6.0127) 11.3101**(8.5372) 10.294**(8.9783)
R-squared 0.8913 0.9041 0.8965

Pairwise granger causality test
Table 7 delineates the outcomes of the causal linkages across diverse determinants. The results of an F-
statistic 4.65823 and p-value .0499 indicate no Granger-causal link between LLGDP and LCO2

because the test rejects the null hypothesis at a 5% significance level. The data indicates single-
directional cause-effect relationships between LAI and LDGE and LCO2 since their p-values lie below
the standard significance threshold. A two-way causal connection exists within LCO2 and INDUS. The
analyzed p-values which exceed the significance threshold demonstrate LCO2 has no statistically
significant impact on LGDP, LAI or LDGE. For these interactions we lack enough evidence to deny
the null hypothesis stating causality does not exist.

Table 7. Causality test.
Null Hypothesis Obs F-Statistic Prob.
LGDP ≠ LCO 30 4.65823 0.0499
LCO2 ≠ LGDP 0.76382 0.647
LAI ≠ LCO2 30 3.78341 0.0027
LCO2 ≠ LAI 0.67394 0.7692
LREN ≠ LCO2 30 6.67381 0.0072
LCO2 ≠ LREN 0.46839 0.0283
LDGE ≠ LCO2 30 3.89923 0.0071
LCO2 ≠ LDGE 0.67892 0.1381
LINDUS ≠ LCO2 30 2.78290 0.0077
LCO2 ≠ LINDUS 3.39028 0.0154

Diagnostic Test
The diagnostic assessment results appear in Table 8. The experimental results proved that all diagnostic
procedures yielded minimal effectiveness rates during which the null hypothesis maintained its validity.
The JB test results show that the residuals follow a normal distribution since the calculated p value
stands at 0.2078. Analysis through the LM method shows that the residuals do not show serial
correlation since the p-value stands at 0.5698. The BPG test validates that the residuals show no
heteroscedasticity because its p-value reaches 0.7830.
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Table 8. The findings of diagnostic tests.
Diagnostic tests Coefficient p-value
Normality test 0.26531 0.2078
Serial Correlation test 0.78901 0.5698
Heterocedasicity test 1.3245 0.7830

The structural reliability assessment of residuals at extended and brief intervals uses CUSUM and
CUSUM-SQ statistics. The CUSUM-SQ plot graphically displays results within accepted critical limits
through its position on the crucial line as shown in figure 01. The tests support the acceptability and
coherence of parameters at a 5% significance level.
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Figure 1. CUMSUM and CUSUM-SQ.

Conclusion
A thorough examination has studied the implications of AI innovation, GDP growth, cleanenergy usage,
digital economy, and industrialization on CO₂ emissions in the USA from 1990 to 2022. The research
confirms through the ARDL framework that AI innovation, along with the digital economy and
renewable energy production, lowers environmental stress, yet GDP growth, together with
industrialization, worsens environmental issues. The results from ADF, PP, and DF-GLS tests verify
that these variables possess different levels of integration status without existing unit root issues. The
analysis through ARDL methodology shows positive relationships among AI innovation and green
power adoption and the digital economy toward USA CO2 emissions reduction. The successful
deployment of sustainable energy systems and a digitalized economy together with AI technology
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brings positive results to environmental quality. Economic development, along with industrial
evolution, generates an opposing reaction with CO2 emissions, indicating that these activities
destructively affect environmental quality. The implementation of energy-efficient approaches and
environmentally friendly industrial methods allows the development of innovative rivalries, which lead
to sophisticated technology access. The reliability of ARDL results gains additional credibility through
robustness assessments that use the combination of FMOLS, DOLS, and CCR. The Granger causality
tests reveal that unidirectional causal effects run from LCO2 to LAI and from LCO2 to LDGE. The
relationships between economic developments and advancements in AI, together with digitalization,
demonstrate extensive effects on environmental sustainability within the USA. The study provides
multiple suggested laws to enhance America's sustainable economic growth through technical
innovation implementation alongside greener energy consumption methods and sustainable industrial
installation.
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