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ORIGINAL RESEARCH
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ABSTRACT: Returning straw to the field combined with nitrogen (N)
fertilizer application is an effective way to enhance soil fertility. While
previous studies have focused on soil's physical and chemical properties,
the impact of straw returning on the microbial community has been less
explored. In this study, we used four treatments including control (CK),
nitrogen 150 kg ha−1 (N), straw return 10 tonnes ha−1 (SR), and combined
SR and N (SRN= straw return 5 tonnes ha−1 + nitrogen 75 kg ha−1) to
understand the effects of N fertilizer application and straw returning on
bacterial community structure. Using high-throughput sequencing, we
analyzed the bacterial community under different treatments and identified
the main factors influencing soil bacterial communities. Results showed
that soil properties such as pH, soil organic carbon (SOC), and available
phosphorous (AP) were significantly higher in SR+N treatments. While AP,
available nitrogen (AN), available potassium (AK), and total nitrogen (TN)
were higher in sole N applied treatments. The results of high-throughput
sequencing analyses demonstrated that the main bacteria at the phylum
level were Actinobacteria (31-34%), Proteobacteria (25-30%),
Acidobacteria (15-21%), and Chloroflexi (13-16%) across the treatments.
Furthermore, the SR+N treatment exhibited the highest relative abundances
of Dependentiae, Proteobacteria, Chloroflexi, and Bacteroidetes compared
to all other treatments. Our results indicated that the combined application
of straw return and N fertilizer enhanced soil fertility and increased the
abundance of beneficial soil bacteria. Additionally, SOC emerged as the
primary factor influencing variations in soil bacterial communities.
However, several beneficial bacteria were less abundant in the combined
treatment and more prevalent in the sole SR or sole N treatments. Thus,
further research is necessary to develop new straw return strategies that
optimize agricultural yields while minimizing ecological impacts.
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1. Introduction
Chemical fertilizers are widely used to

quickly and effectively supplement essential
nutrients for crop growth, significantly
boosting the levels of nitrogen (N),
phosphorus (P), and potassium (K) in the soil
(Ali et al., 2020; Ali et al., 2019). These
elements are critical for increasing

agricultural yields. However, excessive use
of chemical fertilizers can lead to
environmental pollution and soil degradation,
including salinization and acidification,
which damage soil structure and cause soil
crusting (Ahmad et al., 2022). To mitigate
these adverse effects, a combined application
of chemical fertilizers and organic matter has
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been recommended. Crop straw is the most
common organic material in agricultural
production and combining it with chemical
fertilizers can enhance the organic matter
content of black soil, improving its physical
properties (Luo et al., 2020; Zhu et al., 2022;
Han et al., 2018). Studies have shown that
straw returning can increase soil porosity,
reduce bulk density, improve soil
permeability, enhance water and fertilizer
retention, boost crop yields, and reduce
pollution from straw burning (Gao et al.,
2024; Yin et al., 2018; Wu et al., 2023;
Sarkar et al., 2020; Zheng et al., 2015; Sing
et al., 2022).

Soil microorganisms, the most abundant
life forms in soil, are essential for
maintaining ecological functions such as
biogeochemical cycles (Garaycochea et al.,
2024), litter decomposition (Bonilla et al.,
2012), and plant growth (Khan et al., 2024;
Ahmad et al., 2023; Ahmad et al., 2022).
Their sensitivity to environmental changes
makes them valuable indicators of ecological
shifts (Yu et al., 2016; Le et al., 2024). The
decomposition and transformation of straw in
the soil are driven by these microorganisms,
which benefit from the carbon sources
provided by straw, thereby increasing their
abundance and diversity (Su et al., 2020).
Research has shown that straw returning can
alter the bacterial community structure and
enhance the abundance of bacteria involved
in organic matter degradation (Hao et al.,
2019). Compared to the sole application of
chemical fertilizers, the combination of straw
returning, and chemical fertilizers
significantly improves soil fertility, increases
soil enzyme activity and bacterial abundance,

and modifies the bacterial community
structure (Chen et al., 2017).

While previous studies have documented
the impact of chemical fertilizers and straw
returning on soil microbial communities,
most relied on traditional methods that do not
provide detailed insights into microbial
community dynamics (Su et al., 2020).
Additionally, few studies have examined the
effects of reducing nitrogen fertilizer in
conjunction with long-term straw returning
on soil microbial communities in farmlands
(Shi, et al., 2014). This study aims to fill this
gap by evaluating the effects of continuous
rice straw return and reduced nitrogen
fertilizer application on the bacterial
communities in farmland soils. Using high-
throughput sequencing technology, we
characterized the impact of combining
nitrogen fertilizer application with straw
returning on soil microbial community
structure and diversity and explored their
relationship with soil chemical properties.

This study aimed to investigate the effects
of different treatments on soil properties and
bacterial communities in paddy soil and their
relationship to soil properties. Specifically,
the objectives were to analyze the community
structure of soil bacteria and evaluate the
alpha and beta diversity of these bacterial
communities. The treatments included
control (CK), nitrogen application (N), straw
return (SR), and a combination of straw
return and nitrogen (SRN). All treatments
utilized rice straw to replace the removed
straw in the field. Through this research, we
sought to understand how these agricultural
practices influence soil microbial ecology.
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2. Mater ials and methods
2.1 Exper imental design and treatment
details

A randomized complete block experiment
was conducted at the Microbiology and
Biocontrol Lab, Bangladesh Agricultural
University, Mymensingh, Bangladesh, with
four treatments, each replicated three times.
The details of the experimental treatments are
as follows: control (CK), nitrogen 150 kg
ha−1 (N), straw return 10 tonnes ha−1 (SR),
and combined SR and N (SRN= straw return
5 tonnes ha−1 + nitrogen 75 kg ha−1). All of
the removed straw was replaced in the field,
and the straw that was brought back was rice
straw. The amount of total nitrogen (TN),
total phosphorus (TP), and total potassium
(TK) in 8–10 cm of crushed rice straw was
0.089, 0.0276, and 2.0 g kg−1, respectively.
Urea was used for N fertilizer N content of
46%. Other fertilizers such as potassium
sulfate (K2O content 50%) and double
superphosphate (P2O5 content 46%) were
applied to all treatments with the rate of 120
kg ha−1 and 80 kg ha−1 respectively. N
fertilizer was divided into three different
doses, 50% before transplanting, 30% during
tillering, and 20% at the heading stage. All
standard agronomic practices, including
irrigation and herbicide and insecticide
applications, were the same for all plots.
2.2 Soil sampling

In each plot, three randomly designated 5
m² areas were marked out before the rice was
harvested in the second year of 2021. Five
soil samples (0–15 cm topsoils) were
collected from each area using a soil auger,
and the samples were then combined into one
composite sample. The composite soil
sample was subsequently divided into two

parts: one part was crushed, air-dried, and
passed through a 2 mm sieve for the
determination of soil chemical properties; the
second part was stored at −80 °C for
sequencing.

Soil pH was determined using a pH meter
with a soil-to-water ratio of 1:2.5 w/v. Soil
organic carbon (SOC) was analyzed
following the method outlined by Yeomans
and Bremner, (1988). Total nitrogen (TN)
was measured using an elemental analyzer
(Elementar, Langenselbold, Germany).
Available nitrogen (AN) was sequentially
digested in H2SO4-HCLO4, 0.05 M NaHCO3,
and 2.0 M KCL. Available phosphorus (AP)
was quantified using a colorimetric method
after extraction with 0.5 M NaHCO3 (Zhu et
al., 2021). Total phosphorus (TP), total
potassium (TK), available nitrogen (AN), and
available potassium (AK) were measured
using continuous flow analysis (SAN++,
Skalar Analytical, Breda, The Netherlands).
2.3. DNA extraction and 16S rRNA
sequencing

DNA was extracted using the FastDNA™
Spin Kit for Soil (MP Biomedicals, US)
according to the manufacturer’s instructions.
DNA concentration was measured with a
NanoDrop 2000 (Thermo Fisher Scientific,
Wilmington, DE, USA), and the quality of
PCR products was verified by 2% agarose gel
electrophoresis. The V3–V4 region of the
16S rRNA gene was amplified using the
primer pairs 515F
(GTGCCAGCMGCCGCGG) and 907R
(CCGTCAATTCMTTTRAGTTT). PCR and
sequencing were carried out by the
Microbiology and Biocontrol Lab,
Bangladesh Agricultural University,
Mymensingh, Bangladesh.
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2.4. Processing of Illumina Sequencing
Data

The paired reads were merged using
FLASH (version 1.2.3) software to combine
the sequences before assembling a gene
segment (Magoc and Salzberg, 2011).
Chimeric sequences were identified and
removed using a de novo method with
USEARCH (version 8.1.1861) (Edgar, 2010).
After removing the chimeras, high-quality
bacterial sequences were collected for
subsequent analysis.

Effective bacterial sequences were
subsampled separately for each sample for
further statistical analysis. Following
subsampling, the data were processed using a
modified SOP pipeline based on USEARCH
and the software package QIIME
(Quantitative Insights Into Microbial Ecology
v1.8.0) (Tian et al., 2015). Briefly, the
selected sequences were clustered into
operational taxonomic units (OTUs) using a
two-stage clustering algorithm with
USEARCH (version 8.1.1861) at 97%
sequence identity (Edgar, 2010).
Representative sequences in each OTU were
aligned to the SILVA reference alignment
(Yilmaz et al., 2014). Taxonomy was
assigned to each representative sequence
using the RDP classifier with a minimum
confidence threshold of 85%.

An OTU-based analysis method was used
to evaluate bacterial diversity (alpha diversity)
in each sample. To estimate the diversity
index and species richness for each sample,
OTU richness, and Chao1 and Shannon
indices were calculated using QIIME
software (v1.8.0) at a sequencing depth of
3%. Statistical analysis was performed using
ANOVA to determine significant differences

in diversity indices and species richness
among the plant rhizosphere soil samples.
Rarefaction and rank abundance curves were
calculated at a 97% similarity level of the
OTUs.

Beta diversity analysis was conducted to
determine the similarity of community
structure among all samples. At the OTU
level, beta diversity was calculated using
weighted UniFrac distances and visualized
through principal coordinate analysis (PCoA).
The weighted UniFrac distance matrices were
clustered and evaluated using QIIME
software (v1.8.0) to show phylogenetic
relationships among various communities
and their abundance in the respective samples.
2.5. Statistical Analysis

Statistics 8.1 analytical software was used
to perform analysis of variance (ANOVA)
among the treatments for each variable.
Alpha diversity of bacteria, including
Shannon and Chao1 indices, was calculated
using QIIME software (v1.8.0). Rarefaction
curves for species richness were plotted
against the number of sequences, and the
analysis of dominant phyla was conducted
using Microbiome Analyst (Dhariwal et al.,
2017). Correlation analysis among soil
properties and soil microbial abundance was
performed using R (3.2) software.
3. Results
3.1 Soil Proper ties

Soil properties were significantly affected
by nitrogen (N), straw return (SR), and
combined SR and N (SR+N) treatments
(Table 1). Soil pH showed the highest value
of 6.4 in the combined treatment (SR+N),
followed by N (5.9), compared to sole SR
and CK treatments. Soil organic carbon (SOC)
increased by 37% in the SR+N treatment
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compared to CK, while total nitrogen (TN)
increased by 22% in the individual N
treatment compared to the SR treatment.
Similarly, available nitrogen (AN), available
phosphorus (AP), and available potassium
(AK) increased in the N treatment by 21%,
13%, and 30%, respectively, compared to the
control. In contrast, total phosphorus (TP)
and total potassium (TK) were highest in the
SR treatment, with values of 1.58 g·kg−1 and
0.96 g·kg−1, respectively, compared to all
other treatments. The lowest values of TP,
TN, and TK were recorded in the CK
treatment. Overall, these results showed that
soil properties are greatly influenced by the
type of treatment applied, highlighting the
importance of combined nitrogen and straw
return for enhancing soil health.

3.2 Alpha and Beta Diversity of Soil

Bacter ia

The soil bacterial alpha diversity indices,
namely Chao1 and Shannon indices,
demonstrated notable variations across the
different treatments (Figure 1 A and B).
Statistically significant differences were
observed among the four treatments (p <
0.05). The SR treatment yielded the highest
Shannon index of 4.9, with CK and N
treatments following, and the SR+N
treatment showing the lowest value (Figure
1A). Similarly, the Chao1 index reached its
peak at 585.4 in the SR treatment, followed
by the CK and N treatments.

Table 1. Changes in soil properties under the treatments of straw return, nitrogen application, and
their combined treatments.

Treatments CK SR N SR+N

pH 5.8± 0.13 c 5.4± 0.32 c 5.9± 0.14b 6.4± 0.24 a

SOC (g kg−1) 1.89± 0.05 c 1.76± 0.13 c 2.1± 0.14 b 2.6± 0.08 a

TN (g kg−1) 1.77± 0.22 c 1.58± 0.09 c 1.94± 0.24 a 1.82± 0.12 b

TP (g kg−1) 0.76 ± 0.02 c 0.96 ± 0.00 a 0.84 ± 0.01b 0.73 ± 0.03c

TK (g kg−1) 15.43 ± 0.41c 21.03 ± 0.55 a 19.51 ± 0.13b 19.67 ± 0.81b

AN (mg kg−1) 187.46 ± 4.05b 180.57 ± 3.06b 209.09 ± 2.33a 148 ± 7.71c

AP (mg kg−1) 45.52 ± 0.65b 46.61 ± 3.53b 51.78 ± 0.34 a 51.91 ± 1.10 a

AK (mg kg−1) 167.15 ± 6.14c 162.46 ± 5.43 c 218.66 ± 4.76 a 186.59 ± 5.94b

Note: SOC-Soil organic carbon, TN-total nitrogen, TP-total phosphorus, TK-total potassium, AN-available nitrogen,
AP-available phosphorus. AK-available potassium. N- nitrogen, SR-straw return. Different lowercase letters indicate
significant differences according to one-way ANOVA coupled with the LSD test (p < 0.05).
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Figure 1. Changes in the abundance and diversity of OTUs from soil samples under straw return and
nitrogen fertilizers.

The soil bacterial alpha diversity indices,
namely Chao1 and Shannon indices,
demonstrated notable variations across the
different treatments (Figure 1 A and B).
Statistically significant differences were
observed among the four treatments (p <
0.05). The SR treatment yielded the highest
Shannon index of 4.9, with CK and N
treatments following, and the SR+N
treatment showing the lowest value (Figure
1A). Similarly, the Chao1 index reached its
peak at 585.4 in the SR treatment, followed
by the CK and N treatments.

Figure 2 shows the principal coordinate
analysis of the four studied treatments using
the bray-curtis distance index. The analysis
explained 70% of the total variation among
the replicated samples of each treatment, with
pcoA1 explaining 51.5 % and pcoA 2
explaining 18.5% variation. The analysis
showed greater differences among the
treatments with Sr+N treatment being the
most dissimilar in terms of bacterial diversity.
The CK and SR treatments were somehow
similar as indicated by the distribution of

replicated samples on the quadrants.
However, the changes observed between
these treatments were statistically non-
significant.

Figure 3 shows the non-metric
dimensional scaling (NMDS) analysis of the
four studied treatments using the bray-curtis
distance index.

Figure 2. Principal coordinate analysis of the four
studied treatments using the bray-curtis distance
index.

The analysis showed greater differences
among the treatments with Sr+N treatment
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being the most dissimilar in terms of bacterial
diversity. The CK and SR treatments were
somehow similar as indicated by the
distribution of replicated samples on the
quadrants. The changes observed in between
these treatments were statistically non-
significant. However, the stress value of
0.035 shows that the analysis is a good fit for
the interpretation.
3.3 Community Structure of Soil Bacter ia

To calculate rarefaction curves, bacterial
richness, and diversity, OTUs with 97%
genetic similarity were discovered. The
rarefaction curves showed that the
sequencing effort was enough to characterize
the majority of the variety in soil samples
(Figure 4).

Figure 5 represents the relative abundance
of soil bacterial phyla influenced by SR, N,
and their combined treatments. Across the
treatments, the relative abundance of the top

phyla in descending order was Actinobacteria
(31-34%), Proteobacteria (25-30%),
Acidobacteria (15-21%), and Chloroflexi
(13-16%).

Figure 3. Non-metric dimensional scaling (NMDS)
analysis of the four studied treatments using the
bray-curtis distance index.

Figure 4. Rarefaction curves of 16S rRNA sequencing depth and number of species numbers in soil depth
(0–20 cm). Control (CK), nitrogen 150 kg ha−1 (N), straw return 10 tonnes ha−1 (SR), and combined SR
and N (SRN).
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Figure 5. Based on the 16S rRNA gene the relative abundance of soil bacterial community composition at
phylum level. Each strip represents the mean of three replicates.

Figure 6. Based on the 16S rRNA gene the relative abundance of soil bacterial community composition at
genus level. Each strip represents the mean of three replicates.
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The abundance of other bacterial phyla,
including Firmicutes, Not_Assigned,
Bacteroidetes,.Dependentiae,.Gemmatimon-
adetes, Nitrospirae, and Others, ranged from
0.1% to 1% At the genus level, the top 10
bacteria were Dependentiae, Nitrospirae,
Proteobacteria,.Gemmatimonadetes,.Chloro-
flexi, Actinobacteria, Acidobacteria,
Firmicutes, Not_Assigned, Bacteroidetes,
and Others (Figure 6). Among these genera,
Dependentiae, Nitrospirae, and
Proteobacteria were the most abundant
across all treatments, with relative

abundances of 40-48%, 15-20%, and 7-12%,
respectively.

The SR+N (Straw return + nitrogen)
treatment exhibited the highest relative
abundances of Dependentiae, Proteobacteria,
Chloroflexi, and Bacteroidetes, with values
of 49.09%, 49.09%, 3.08%, and 2.18%,
respectively. In contrast, Nitrospirae showed
the highest relative abundance of 17% in the
sole SR treatment. Gemmatimonadetes and
Actinobacteria were most abundant in the N
treatment, with values of 7.01% and 4.20%,
respectively.

Figure 7. Correlation analysis among soil microbial abundance and soil properties.
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Figure 8. Correlation analysis among soil microbial abundance and soil properties.

3.4 Correlation of soil proper ties and soil-

abundant bacter ia

Figure 7 shows the Pearson correlation
heatmap among the most abundant bacteria
and soil properties. Soil properties, including
SOC (R = 0.91), AP (R = 0.60), and TN (R =
0.15), were strongly positively correlated
with Proteobacteria. However, soil TP (R =
−0.52) and AN (R = −0.88) were strongly
negatively correlated with Proteobacteria.
Furthermore, the abundance of soil bacteria,
including Dependentiae (R = 0.947),
Chloroflexi (R = 0.55), and Bacteroidetes (R
= 0.80), was strongly positively correlated
with the SOC of paddy rice, whereas the
abundance.of.Actinobacteria,Gemmatimona-
detes, and Firmicutes showed a negative
relationship with SOC

RDA was employed to assess the strength
of the relationship between soil pH, SOC, TN,

TP, TK, AN, AP, and AK concentration and
soil bacterial diversity. Figure 8 indicates the
correlation between bacterial communities (at
the phyla level) and soil characteristics under
various treatments. Soil pH, AN, AP, AK,
and AP all occurred in the same quadrant,
indicating that nitrogen fertilizer and straw
return had a major impact on soil
characteristics. Where AP and SOC occurred
in the same quadrant as DR, which indicated
that SR alone with the maximum amount of
application can improve SOC and AP. The
four treatments were administered in four
distinct quadrants, demonstrating that the
fertilization treatments had a significant
impact on the composition of soil
microorganisms. Straw return combined with
N fertilizer has a substantial association with
soil characteristics.
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4. Discussion
Soil properties play a vital role in soil

bacterial diversity, activity, and function,
influencing nutrient cycling, organic matter
decomposition, and overall soil health. In the
current study soil pH, SOC, and AP were
increased with the combined treatment of
SR+N. The observed increase in soil pH with
the combined SR+N treatment can be
attributed to several mechanisms. Firstly,
straw return can increase the microbial
decomposition of organic matter, which
produces organic acids that buffer soil pH
(Zhao et al., 2016). Secondly, nitrogen
fertilizers often contain alkaline substances
such as lime (calcium carbonate), which
neutralize soil acidity and increase pH
(Nasedjanov et al., 2012). This combined
effect can create a more favorable
environment for microbial activity and
nutrient availability, thus enhancing soil
health and fertility (Pan et al., 2021).
Additionally, the combined SR+N treatment
enhances soil organic carbon (SOC) by
promoting microbial activity and organic
matter incorporation and increases available
phosphorus (AP) due to the improved
mineralization of organic phosphorus
compounds (Wang et al., 2022; Guo et al.,
2024; Yuan et al., 2021).

In the current study, soil total nitrogen
(TN), available phosphorus (AP), and
available potassium (AK) were recorded
higher in treatments where nitrogen (N) was
applied alone compared to treatments with
straw return (SR), control (CK), and the
combination of SR and CK. The higher levels
of TN, AP, and AK in the sole N treatments
can be attributed to the direct addition of
nutrients in readily available forms that are

immediately accessible to plants and soil
microorganisms. In contrast, the SR and
combined treatments may result in a slower
release of nutrients as organic matter
decomposes over time, leading to lower
immediate availability of these key nutrients
(Palm et al., 1997; Guan et al., 2020; Siedt et
al., 2021). The findings underscore the
importance of considering both the
immediate and long-term effects of different
fertilization practices on soil nutrient
dynamics and overall soil health (Guan et al.,
2020; Siedt et al., 2021). In contrast, TP and
TK were higher in the sole treatment SR,
which indicated that the incorporation of
organic material from straw can enhance the
availability of these nutrients by promoting
mineralization and reducing nutrient losses
through leaching (Wang et al., 2021).

Soil microorganisms play a vital role in
soil nutrient availability (Ahmad et al., 2023;
Ahmad et al., 2022). In the present study, the
SR+N treatment (Straw return + nitrogen)
exhibited the highest relative abundances of
Dependentiae, Proteobacteria, Chloroflexi,
and Bacteroidetes genera. This increase in
bacterial abundance can be attributed to the
combined effects of organic matter from
straw and nitrogen fertilization, which
enhance soil nutrient availability and create a
more favorable environment for microbial
growth (Huang et al., 2021; Mohammadi et
al., 2011; Chen et al., 2021). The
incorporation of straw provides a carbon
source that supports the growth of
heterotrophic bacteria like Proteobacteria and
Bacteroidetes, while nitrogen fertilization
improves the overall nutrient status of the soil,
benefiting a broad range of microbial taxa
(Zhang et al., 2019; Xiaoping et al., 2019;
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Zhu et al., 2022). These bacteria play crucial
roles in nutrient cycling, organic matter
decomposition, and promoting soil health,
which can enhance plant growth and
productivity (Ali et al., 2022; Khan et al.,
2022a; Khan et al., 2022b: Khan et al., 2021;
Song et al., 2022).

In contrast, Nitrospirae genera showed the
highest relative abundance of 17% in the sole
SR treatment. Gemmatimonadetes and
Actinobacteria genera were most abundant in
the N treatment, with values of 7.01% and
4.20%, respectively. The increased
abundance of Nitrospirae in the SR treatment
can be attributed to the enhanced availability
of organic substrates from straw
decomposition, which supports the growth of
nitrifying bacteria involved in nitrogen
cycling (Daims et al., 2015; Luo et al., 2017;
Wang et al., 2021; Guan et al., 2023). The
high levels of Gemmatimonadetes and
Actinobacteria in the N treatment are likely
due to the improved soil nutrient status from
nitrogen fertilization, which favors these
bacteria known for their roles in nutrient
turnover and organic matter decomposition
(Ren et al., 2020; Janssen, 2006; Xu et al.,
2020; Gu et al., 2021; Zhang et al., 2014).
These microbial groups contribute
significantly to soil health by promoting
nutrient cycling, enhancing soil structure, and
supporting plant growth through the
decomposition of organic materials and the
release of nutrients.

The combination of straw return and
nitrogen fertilizer can induce
physicochemical changes in the soil,
resulting in alterations in the composition of
the bacterial community (Jiao et al., 2023). In
the present study, we observed that straw

return amendments significantly influenced
soil properties, as shown in Table 1.
Furthermore, it has been reported that soil
quality traits are positively correlated with
the structure and composition of the bacterial
community (Wu et al., 2020). Figure 7
illustrates the relationship between the
bacterial community at the genus level and
soil traits, including TN, SOC, TP, TK, AN,
AP, and AK, for different treatments. Our
findings indicate that dominant bacteria at the
genus level, such as Proteobacteria,
Chloroflexi, and Acidobacteria, are positively
correlated with SOC and AP. This suggests
that bacterial growth is strongly influenced
by N fertilizer, and regulating the type and
proportion of straw return is an effective
strategy for enhancing bacterial growth. In
conclusion, the application of straw return
amendments in conjunction with nitrogen
fertilizer may create a more favorable
environment for bacterial growth, thereby
improving the bacterial community structure
and soil fertility.

5. Conclusions
The results demonstrated that the

combination of straw return and nitrogen
fertilizer significantly improved soil pH,
SOC, and AP. In contrast, sole straw return
enhanced TP and TK, while sole nitrogen
application increased AP, AN, and TN. The
bacterial Chao1 and Shannon indices were
highest in treatments with only straw return,
followed by those with only nitrogen
application. The ten most abundant genera
across all treatments were Dependentiae,
Nitrospirae,.Proteobacteria,.Gemmatimonad
etes,.Chloroflexi,.Actinobacteria,.Acidobacte
ria,.Firmicutes,.Not_Assigned,.and.Bacteroid
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etes. Moreover, variations in soil bacterial
communities were closely linked to changes
in soil SOC, TN, AP, and AK, indicating that
the effects of combined straw return and
nitrogen.application.on..bacterial..communiti
es were driven by changes in soil chemical
properties. These findings provide valuable
insights and a foundational understanding of
improving paddy soil through the combined
use of straw return and nitrogen fertilizer,
highlighting its promising application
potential.
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