Correlation Between Coarse Wood Debris and Soil Different Chemical Properties of Three Forest Types in Northeast China
DOI:
https://doi.org/10.56946/jspae.v3i1.394Keywords:
Coarse wood debris, Soil properties, decomposition rates, forest ecosystem, enzymatic activityAbstract
Coarse wood debris (CWD) is a critical component of the nitrogen and carbon pools in forest ecosystems. While CWD decomposition rates have been studied extensively across various ecosystems, the effects of CWD on soil properties and their interrelations remain unclear. This study aimed to measure the response of CWD to soil and their interrelations among three forest types: Picea koraiensis-Abies nephrolepis-Pinus koraiensis forest (PAPF), Betula costata-Pinus koraiensis forest (BPF), and Tilia amurensis-Pinus koraiensis forest (TPF). The results indicated that CWD carbon was positively correlated with soil pH (R²=0.36). CWD nitrogen was positively correlated with urease activity, while negatively correlated with dehydrogenase activity. There was a consistent correlation between overall CWD and soil nutrient concentrations among the three forest types, although the pattern of these correlations varied among PAPF, BPF, and TPF. This highlights the need to explore attribute interrelations across different ecological gradients. Overall, CWD phosphorus (P) and carbon (C) were positively correlated with soil pH, while aluminum (Al) was negatively correlated. CWD nitrogen (N) was positively correlated with urease enzyme activity, whereas CWD carbon (C) and nitrogen (N) were negatively correlated with invertase and dehydrogenase enzymes, respectively. CWD sulfur (S) was positively correlated with soil sulfur, while CWD carbon (C), potassium (K), and magnesium (Mg) were negatively correlated with their respective soil counterparts. This study demonstrates that variations in soil nutrient concentrations and enzymatic activity are significantly influenced by decomposition levels.
References
Ahmad, R., Gao, J., Li, W., Zhang, Y., Gao, Z., Khan, A., ... & Fahad, S. Response of soil nutrients, enzyme activities, and fungal communities to biochar availability in the rhizosphere of mountainous apple trees. Plant and Soil. (2023). 489(1), 277-293. https://doi.org/10.1007/s11104-023-06016-4
Ahmad, R., Gao, J., Gao, Z., Khan, A., Ali, I., & Fahad, S. Influence of biochar on soil nutrients and associated Rhizobacterial communities of mountainous apple trees in northern loess plateau China. Microorganisms. (2022). 10(10), 2078. https://doi.org/10.3390/microorganisms10102078
Bachmeier, K. L., Williams, A. E., Warmington, J. R., & Bang, S. S. Urease activity in microbiologically-induced calcite precipitation. Journal of biotechnology. (2002). 93(2), 171-181. https://doi.org/10.1016/S0168-1656(01)00393-5
Bade, C., Jacob, M., Leuschner, C., & Hauck, M. Chemical properties of decaying wood in an old-growth spruce forest and effects on soil chemistry. Biogeochemistry. (2015). 122, 1-13. https://doi.org/10.1007/s10533-014-0015-x
Bani, A., Pioli, S., Ventura, M., Panzacchi, P., Borruso, L., Tognetti, R., & Brusetti, L. The role of microbial community in the decomposition of leaf litter and deadwood. Applied soil ecology. (2018). 126, 75-84. https://doi.org/10.1016/j.apsoil.2018.02.017
Bedford, B. L., Walbridge, M. R., & Aldous, A. Patterns in nutrient availability and plant diversity of temperate North American wetlands. Ecology. (1999). 80(7), 2151-2169. https://doi.org/10.1890/0012-9658(1999)080[2151:PINAAP]2.0.CO;2
Berg, B. Litter decomposition and organic matter turnover in northern forest soils. Forest ecology and Management. (2000). 133(1-2), 13-22. https://doi.org/10.1016/S0378-1127(99)00294-7
Bessaad, A., Bilger, I., & Korboulewsky, N. Assessing biomass removal and woody debris in whole-tree harvesting system: Are the recommended levels of residues ensured?. Forests. (2021). 12(6), 807. https://doi.org/10.3390/f12060807
Bilous, A., Matsala, M., Radchenko, V., Matiashuk, R., Boiko, S., & Bilous, S. Coarse woody debris in mature oak stands of Ukraine: carbon stock and decomposition features. Forestry Ideas. (2019). 25(1), 196-219.
Bradford, M. A., Warren II, R. J., Baldrian, P., Crowther, T. W., Maynard, D. S., Oldfield, E. E., & King, J. R. Climate fails to predict wood decomposition at regional scales. Nature Climate Change. (2014). 4(7), 625-630. https://doi.org/10.1038/nclimate2251
Brais, S., Sadi, F., Bergeron, Y., & Grenier, Y. (2005). Coarse woody debris dynamics in a post-fire jack pine chronosequence and its relation with site productivity. Forest Ecology and Management. (2005). 220 (1-3), 216-226. https://doi.org/10.1016/j.foreco.2005.08.013
Bunnell, F. L., & Houde, I. Down wood and biodiversity—implications to forest practices. Environmental Reviews. (2010). 18(NA), 397-421. https://doi.org/10.1139/A10-019
Bunnell, F. L., Kremsater, L. L., & Moy, A. Coarse filter assessment of contribution of dying and dead wood to sustaining biodiversity on TFL 48 Progress Report. (2014).
Dar, J. A., & Sundarapandian, S. Variation of biomass and carbon pools with forest type in temperate forests of Kashmir Himalaya, India. Environmental monitoring and assessment. (2015). 187, 1-17. https://doi.org/10.1007/s10661-015-4299-7
Dhandapani, S., Ritz, K., Evers, S., Cooper, H., Tonks, A., & Sjögersten, S. Land-use changes associated with oil palm plantations impact PLFA microbial phenotypic community structure throughout the depth of tropical peats. Wetlands. (2020). 40(6), 2351-2366. https://doi.org/10.1007/s13157-020-01342-0
Dhiedt, E., De Keersmaeker, L., Vandekerkhove, K., & Verheyen, K. Effects of decomposing beech (Fagus sylvatica) logs on the chemistry of acidified sand and loam soils in two forest reserves in Flanders (northern Belgium). Forest ecology and management. (2019). 445, 70-81 https://doi.org/10.1016/j.foreco.2019.05.006
Filipiak, M. Nutrient dynamics in decomposing dead wood in the context of wood eater requirements: The ecological stoichiometry of saproxylophagous insects Saproxylic Insects (pp. 429-469): Springer. (2018). https://doi.org/10.1007/978-3-319-75937-1_13
Fukasawa, Y. The geographical gradient of pine log decomposition in Japan. Forest Ecology and Management. (2015). 349, 29-35 https://doi.org/10.1016/j.foreco.2015.04.010
Ganjegunte, G. K., Condron, L. M., Clinton, P. W., Davis, M. R., & Mahieu, N. (2004). Decomposition and nutrient release from radiata pine (Pinus radiata) coarse woody debris. Forest Ecology and Management, 187(2-3), 197-211. https://doi.org/10.1016/S0378-1127(03)00332-3
Ge, X., Xiao, W., Zeng, L., Huang, Z., Lei, J., & Li, M. H. The link between litterfall, substrate quality, decomposition rate, and soil nutrient supply in 30-year-old pinus massoniana forests in the three gorges reservoir area, China. Soil science. (2013). 178(8), 442-45. https://doi.org/10.1097/SS.0000000000000004
Gonzalez-Polo, M., Fernández-Souto, A., & Austin, A. T. Coarse woody debris stimulates soil enzymatic activity and litter decomposition in an old-growth temperate forest of Patagonia, Argentina. Ecosystems. (2013). 16, 1025-1038. https://doi.org/10.1007/s10021-013-9665-0
Gough, C. M., Vogel, C. S., Kazanski, C., Nagel, L., Flower, C. E., & Curtis, P. S. Coarse woody debris and the carbon balance of a north temperate forest. Forest Ecology and Management. (2007). 244(1-3), 60-67. https://doi.org/10.1016/j.foreco.2007.03.039
Hafner, S. D., Groffman, P. M., & Mitchell, M. J. Leaching of dissolved organic carbon, dissolved organic nitrogen, and other solutes from coarse woody debris and litter in a mixed forest in New York State. Biogeochemistry. (2005). 74, 257-282. https://doi.org/10.1007/s10533-004-4722-6
Harmon, M. E., & Chen, H. JF Franklin, FJ Swanson, P. Sollins, SV Gregory, JD Lattin, NH Anderson, SP Cline, NG Aumen, JR Sedell, GW Lienkaemper, K. Cromack, Jr., and KW Cummins. (1986). 133-302. https://doi.org/10.1016/S0065-2504(08)60121-X
Harmon, M. E., Bond‐Lamberty, B., Tang, J., & Vargas, R. Heterotrophic respiration in disturbed forests: A review with examples from North America. Journal of Geophysical Research: Biogeosciences. (2011). 116(G4). https://doi.org/10.1029/2010JG001495
Hart, S. C., Nason, G. E., Myrold, D. D., & Perry, D. A. Dynamics of gross nitrogen transformations in an old‐growth forest: The carbon connection. Ecology. (1994). 75(4), 880-891. https://doi.org/10.2307/1939413
Hiscox, J., Savoury, M., Johnston, S. R., Parfitt, D., Müller, C. T., Rogers, H. J., & Boddy, L. Location, location, location: priority effects in wood decay communities may vary between sites. Environmental Microbiology. (2016). 18(6), 1954-1969. https://doi.org/10.1111/1462-2920.13141
Holub, S. M., Spears, J. D., & Lajtha, K. A reanalysis of nutrient dynamics in coniferous coarse woody debris. Canadian Journal of Forest Research. (2001). 31(11), 1894-1902. https://doi.org/10.1139/x01-125
Hoppe, B., Purahong, W., Wubet, T., Kahl, T., Bauhus, J., Arnstadt, T., ... & Krüger, D. (2016). Linking molecular deadwood-inhabiting fungal diversity and community dynamics to ecosystem functions and processes in Central European forests. Fungal Diversity, 77, 367-379. https://doi.org/10.1007/s13225-015-0341-x
Hua, C., & Harmon, M. E. (1992). A study on dynamics of coarse woody debris in temperate forest ecosystems. Chinese Journal of Applied Ecology, 3.
Iraci, J. M. (2012). Nutrient and biomass contributions of downed woody debris in boreal mixedwood forests of northeastern Ontario. University of Toronto (Canada).
Jaman, M. S., Muraina, T. O., Dam, Q., Zhang, X., Jamil, M., Bhattarai, S., & Islam, F. (2021). Effects of single and mixed plant types on soil carbon and nitrogen dynamics in homestead agroforestry systems in Northern Bangladesh. Agriculture, Ecosystems & Environment, 315, 107434. https://doi.org/10.1016/j.agee.2021.107434
Jamieson, T. J., Watmough, S. A., & Eimers, M. C. Increase in woody debris nutrient pools in stream channels following selection harvesting in a northern hardwood forest. Forest ecology and management. (2018). 409, 8-18. https://doi.org/10.1016/j.foreco.2017.10.057
Janisch, J. E., & Harmon, M. E. Successional changes in live and dead wood carbon stores: implications for net ecosystem productivity. Tree physiology. (2002). 22(2-3), 77-89. https://doi.org/10.1093/treephys/22.2-3.77
Johnson, C. E., Siccama, T. G., Denny, E. G., Koppers, M. M., & Vogt, D. J. In situ decomposition of northern hardwood tree boles: decay rates and nutrient dynamics in wood and bark. Canadian Journal of Forest Research. (2014). 44(12), 1515-1524. https://doi.org/10.1139/cjfr-2014-0221
Johnston, S. R. Fungus-bacteria interactions in decomposing wood: unravelling community effects. Cardiff University. (2017).
Jomura, M., Kominami, Y., Dannoura, M., & Kanazawa, Y. Jomura, M., Kominami, Y., Dannoura, M., & Kanazawa, Y. Spatial variation in respiration from coarse woody debris in a temperate secondary broad-leaved forest in Japan. Forest Ecology and Management. (2008). 255(1), 149-155. https://doi.org/10.1016/j.foreco.2007.09.002
Jones, J. M., Heath, K. D., Ferrer, A., Brown, S. P., Canam, T., & Dalling, J. W. J. F. m. e. Wood decomposition in aquatic and terrestrial ecosystems in the tropics: contrasting biotic and abiotic processes. (2019). 95(1), fiy223. https://doi.org/10.1093/femsec/fiy223
Kavanagh, K. Fungi: biology and applications: John Wiley & Sons. (2017). https://doi.org/10.1002/9781119374312
Keith, H., Mackey, B.G., & Lindenmayer, D. B. Re-evaluation of forest biomass carbon stocks and lessons from the world's most carbon-dense forests. (2009). 106(28), 11635-11640. https://doi.org/10.1073/pnas.0901970106
Khan, K., Tuyen, T. T., Chen, L., Duan, W., Hussain, A., Jamil, M. A. Wang, Y. J. F. Nutrient Dynamics Assessment of Coarse Wood Debris Subjected to Successional Decay Levels of Three Forests Types in Northeast, China. (2021). 12(4), 401. https://doi.org/10.3390/f12040401
Kooch, Y., Bayranvand, M. J. F. E., & Management. Composition of tree species can mediate spatial variability of C and N cycles in mixed beech forests. (2017). 401, 55-64. https://doi.org/10.1016/j.foreco.2017.07.001
Kooch, Y., Ehsani, S., & Akbarinia, M. J. E. e. Stoichiometry of microbial indicators shows clearly more soil responses to land cover changes than absolute microbial activities. (2019). 131, 99-106.https://doi.org/10.1016/j.ecoleng.2019.03.009
Kooch, Y., Samadzadeh, B., & Hosseini, S. M. J. C. The effects of broad-leaved tree species on litter quality and soil properties in a plain forest stand. (2017). 150, 223-229. https://doi.org/10.1016/j.catena.2016.11.023
Krankina, O. N., Harmon, M. E., & Griazkin, A. V. J. C. J. o. F. R. Nutrient stores and dynamics of woody detritus in a boreal forest: modeling potential implications at the stand level. (1999). 29(1), 20-32. https://doi.org/10.1139/x98-162
Laiho, R., & Prescott, C. E. J. C. j. o. f. r. Decay and nutrient dynamics of coarse woody debris in northern coniferous forests: a synthesis. (2004). 34(4), 763-777. https://doi.org/10.1139/x03-241
Lamb, E. G., Kennedy, N., Siciliano, S. D. J. P., & Soil. Effects of plant species richness and evenness on soil microbial community diversity and function. (2011). 338(1), 483-495. https://doi.org/10.1007/s11104-010-0560-6
Lodge, D., McDowell, W. H., McSwiney, C. J. T. i. e., & evolution. The importance of nutrient pulses in tropical forests. (1994). 9(10), 384-387. https://doi.org/10.1016/0169-5347(94)90060-4
Magill, A. H., & Aber, J. D. Variation in soil net mineralization rates with dissolved organic carbon additions. Soil biology and biochemistry. (2000). 32(5), 597-601. https://doi.org/10.1016/S0038-0717(99)00186-8
Mäkipää, R., Rajala, T., Schigel, D., Rinne, K. T., Pennanen, T., Abrego, N., & Ovaskainen, O. Interactions between soil-and dead wood-inhabiting fungal communities during the decay of Norway spruce logs. (2017). 11(9), 1964-1974. https://doi.org/10.1038/ismej.2017.57
Marañón-Jiménez, S., & Castro, J. Effect of decomposing post-fire coarse woody debris on soil fertility and nutrient availability in a Mediterranean ecosystem. Biogeochemistry. (2013). 112, 519-535. https://doi.org/10.1007/s10533-012-9744-x
Maron, P. A., Sarr, A., Kaisermann, A., Lévêque, J., Mathieu, O., Guigue, J., ... & Ranjard, L. High microbial diversity promotes soil ecosystem functioning. Applied and Environmental Microbiology. (2018). 84(9), e02738-17. https://doi.org/10.1128/AEM.02738-17
Means, J. E., MacMillan, P. C., & Cromack Jr, K. Biomass and nutrient content of Douglas-fir logs and other detrital pools in an old-growth forest, Oregon, USA. Canadian Journal of Forest Research. (1992). 22(10), 1536-1546. https://doi.org/10.1579/0044-7447-31.2.113
Means, J. E., MacMillan, P. C., & Cromack Jr, K. Biomass and nutrient content of Douglas-fir logs and other detrital pools in an old-growth forest, Oregon, USA. Canadian Journal of Forest Research. (1992). 22(10), 1536-1546. https://doi.org/10.1139/x92-204
Merganičová, K., Merganič, J., Svoboda, M., Bače, R., & Šebeň, V. Deadwood in forest ecosystems. Forest Ecosystems–More than Just Trees, InTech Book. (2012). 81-108. https://doi.org/10.5772/31003
Metzger, K. L., Smithwick, E. A., Tinker, D. B., Romme, W. H., Balser, T. C., & Turner, M. G. Influence of coarse wood and pine saplings on nitrogen mineralization and microbial communities in young post-fire Pinus contorta. Forest Ecology and Management. (2008).256(1-2), 59-67. https://doi.org/10.1016/j.foreco.2008.03.043
Minghe, L., Guoyi, Z., Deqiang, Z., & Lili, G. Decomposition and nutrient release from coarse woody debris of {sl Castanopsis chinensis} in Dinghushan forest ecosystem. Journal of Tropical and Subtropical Botany. (2006). 14(2), 107-112.
Mori, T., Lu, X., Aoyagi, R., & Mo, J. Reconsidering the phosphorus limitation of soil microbial activity in tropical forests. Functional Ecology. (2018). 32(5), 1145-1154. https://doi.org/10.1111/1365-2435.13043
Neher, D. A. Soil community composition and ecosystem processes: comparing agricultural ecosystems with natural ecosystems. Agroforestry Systems. (1999). 45, 159-18. https://doi.org/10.1023/A:1006299100678
Osman, K. T., & Osman, K. T. Nutrient dynamics in forest soil. Forest soils: properties and management,. (2013). 97-121. https://doi.org/10.1007/978-3-319-02541-4_6
Palozzi, J. E., & Lindo, Z.Boreal peat properties link to plant functional traits of ecosystem engineers. Plant and Soil. (2017). 418, 277-291. https://doi.org/10.1007/s11104-017-3291-0
Qi, Y., Li, J., Deng, S., Wang, J., Zhang, Y., Pei, H., Liu, Z. Long‐term irrigation reduces soil carbon sequestration by affecting soil microbial communities in agricultural ecosystems of Northern China. European Journal of Soil Science. (2022). 73(1), e13143. https://doi.org/10.1111/ejss.13143
Rahman, M. M., Tsukamoto, J., Tokumoto, Y., & Shuvo, M. A. R. The role of quantitative traits of leaf litter on decomposition and nutrient cycling of the forest ecosystems. Journal of forest and environmental science. (2013). 29(1), 38-48. https://doi.org/10.7747/JFS.2013.29.1.38
Rajala, T., Peltoniemi, M., Pennanen, T., & Mäkipää, R. Fungal community dynamics in relation to substrate quality of decaying Norway spruce (Picea abies [L.] Karst.) logs in boreal forests. FEMS Microbiology Ecology. (2012). 81(2), 494-505. https://doi.org/10.1111/j.1574-6941.2012.01376.x
Ray, M. J., Leak, D. J., Spanu, P. D., & Murphy, R. J. Brown rot fungal early stage decay mechanism as a biological pretreatment for softwood biomass in biofuel production. Biomass and bioenergy. (2010). 34(8), 1257-1262. https://doi.org/10.1016/j.biombioe.2010.03.015
Rinne‐Garmston, K. T., Peltoniemi, K., Chen, J., Peltoniemi, M., Fritze, H., & Mäkipää, R. (2019). Carbon flux from decomposing wood and its dependency on temperature, wood N2 fixation rate, moisture and fungal composition in a Norway spruce forest. Global Change Biology, 25(5), 1852-1867.https://doi.org/10.1111/gcb.14594
Sierra, C. A. Spatial and temporal variability of carbon dynamics in a tropical forest of Colombia. (2006).
Sinsabaugh, R. L., Lauber, C. L., Weintraub, M. N., Ahmed, B., Allison, S. D., Crenshaw, C., & Zeglin, L. H. Stoichiometry of soil enzyme activity at global scale. Ecology letters. (2008). 11(11), 1252-1264. https://doi.org/10.1111/j.1461-0248.2008.01245.x
Spears, J. D., Holub, S. M., Harmon, M. E., & Lajtha, K. The influence of decomposing logs on soil biology and nutrient cycling in an old-growth mixed coniferous forest in Oregon, USA. Canadian Journal of Forest Research. (2003). 33(11), 2193-2201. https://doi.org/10.1139/x03-148
Sterilized, S., & Sterilized, P. M. Enhanced phosphatase activity in earthworm casts is more of microbial origin. Current Science. (2000). 79(9), 1158.
Stokland, J. N., Tomter, S. M., & Söderberg, U. Development of dead wood indicators for biodiversity monitoring: experiences from Scandinavia. Monitoring and indicators of forest biodiversity in Europe—from ideas to operationality. (2004). 51, 207-226.
Tarus, G. K., & Nadir, S. W. Effect of forest management types on soil carbon stocks in montane forests: a case study of eastern mau forest in Kenya. International Journal of Forestry Research. (2020). 1-10. 2020. https://doi.org/10.1155/2020/8862813
Ulyshen, M. D., Shefferson, R., Horn, S., Taylor, M. K., Bush, B., Brownie, C., ... & Strickland, M. S. Below‐and above‐ground effects of deadwood and termites in plantation forests. Ecosphere. (2017). 8(8), e01910. https://doi.org/10.1002/ecs2.1910
Van der Wal, A., Geydan, T. D., Kuyper, T. W., & De Boer, W. A thready affair: linking fungal diversity and community dynamics to terrestrial decomposition processes. FEMS Microbiology reviews. (2013). 37(4), 477-494. https://doi.org/10.1111/1574-6976.12001
Walker, T. W., Kaiser, C., Strasser, F., Herbold, C. W., Leblans, N. I., Woebken, D., & Richter, A. Microbial temperature sensitivity and biomass change explain soil carbon loss with warming. Nature climate change. (2018). 8(10), 885-889. https://doi.org/10.1038/s41558-018-0259-x
Wang, H., Wu, J., Li, G., & Yan, L. Changes in soil carbon fractions and enzyme activities under different vegetation types of the northern Loess Plateau. Ecology and evolution. (2020). 10(21), 12211-12223. https://doi.org/10.1002/ece3.6852
Wang, Q., Xiao, F., Wang, S., & Xu, G. Response of selected soil biological properties to stump presence and age in a managed subtropical forest ecosystem. Applied soil ecology. (2012). 57, 59-64. https://doi.org/10.1016/j.apsoil.2012.02.019
Warner, D. L., Villarreal, S., McWilliams, K., Inamdar, S., & Vargas, R. Carbon dioxide and methane fluxes from tree stems, coarse woody debris, and soils in an upland temperate forest. Ecosystems. (2017). 20, 1205-1216. https://doi.org/10.1007/s10021-016-0106-8
Weedon, J. T., Cornwell, W. K., Cornelissen, J. H., Zanne, A. E., Wirth, C., & Coomes, D. A. Global meta‐analysis of wood decomposition rates: a role for trait variation among tree species?. Ecology Letters. (2009). 12(1), 45-56. https://doi.org/10.1111/j.1461-0248.2008.01259.x
Wilcke, W., Hess, T., Bengel, C., Homeier, J., Valarezo, C., & Zech, W. Coarse woody debris in a montane forest in Ecuador: mass, C and nutrient stock, and turnover. Forest Ecology and Management,. (2005). 205(1-3), 139-147. https://doi.org/10.1016/j.foreco.2004.10.044
Woodall, C. W., & Liknes, G. C. Climatic regions as an indicator of forest coarse and fine woody debris carbon stocks in the United States. Carbon balance and management. (2008). 3, 1-8. https://doi.org/10.1186/1750-0680-3-5
Wu, C., Zhang, Z., Wang, H., Huang, G., Shu, C., Kong, F., & Liu, Y. Home-field advantage of CWD decomposition in subtropical forests varied by field sites. Forest ecology and management. (2019). 444, 127-137. https://doi.org/10.1016/j.foreco.2019.04.051
Yuan, J., Hou, L., Wei, X., Shang, Z., Cheng, F., & Zhang, S. Decay and nutrient dynamics of coarse woody debris in the Qinling Mountains, China. PLoS One. (2017). 12(4), e0175203. https://doi.org/10.1371/journal.pone.0175203
Yuan, J., Hou, L., & Zhang, S. X.Research progress in coarse woody debris. Journal of Northwest Forestry University. (2011). 26(4), 90-98.
Downloads
Published
How to Cite
Issue
Section
License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.