The Problem of Charcoal Rot in Soybean, its Implications, and Approaches for Developing Resistant Varieties
DOI:
https://doi.org/10.56946/jspae.v3i1.405Keywords:
Macrophomina phaseolina, genomics, charcoal rot, QTLs, genome selectionAbstract
Soybean is an annual legume with edible seeds. The soybean’s charcoal rot is one of the serious challenges faced in its cultivation regions, which brings severe production and economic losses. charcoal rot is the result of infection by the soil-borne fungus Macrophomina phaseolina. Though several researchers have made efforts to deal with soybean’s charcoal rot challenge, but at present, there are no soybean varieties in the market that are resistant to charcoal rot. The pathogen is thought to infect plants in their roots from contaminated soil, using unknown toxin-mediated processes. Conventional integrated approaches for managing charcoal rot in soybeans have been implemented in the field, but their efficacy is limited. So, developing soybean durable resistant varieties against M.phaseolina is the only solution to rescuing this crop. The potential approach is identifying new genetic sources and quantitative trait loci (QTLs) associated with resistance to charcoal rot in the resistant soybean population and conducting genome-wide association studies to increase understanding of underlying resistance mechanisms. The discovery of the genetic markers associated with resistance will contribute to charcoal rot resistance genotype selection for breeding programs in the future.
References
Ahn, S. W., Kim, K. M., Yu, K. W., Noh, D. O., & Suh, H. J. Isolation of Angiotensin 1 Converting Enzyme Inhibitory Peptide from Soybean Hydrolysate. Food Science and Biotechnology. (2000). 9(6), 378-381.
Alcock, T. D., Salt, D. E., Wilson, P., & Ramsden, S. J. More sustainable vegetable oil: Balancing productivity with carbon storage opportunities. Science of The Total Environment. (2022). 829, 154539. https://doi.org/10.1016/j.scitotenv.2022.154539
Amaro, A., Petretto, A., Angelini, G., & Pfeffer, U. Advancements in omics sciences Translational Medicine (pp. 67-108): Elsevier (2016). https://doi.org/10.1016/B978-0-12-803460-6.00004-0
Babu, B. K., Saxena, A. K., Srivastava, A. K., & Arora, D. K. Identification and detection of Macrophomina phaseolina by using species-specific oligonucleotide primers and probe. Mycologia. (2007). 99(6), 797-803. https://doi.org/10.3852/mycologia.99.6.797
Bachman, M., Tamulonis, J., Nickell, C., & Bent, A. Molecular markers linked to brown stem rot resistance genes, Rbs1 and Rbs2, in soybean. Crop Science. (2001). 41(2), 527-535. https://doi.org/10.2135/cropsci2001.412527x
Badole, S., & Bodhankar, S. Glycine max (soybean) treatment for diabetes. Bioact. Food Diet. Interv. Diabetes. (2012). 77, 77-82. https://doi.org/10.1016/B978-0-12-397153-1.00008-1
Bao, Y., Vuong, T., Meinhardt, C., Tiffin, P., Denny, R., Chen, S., . . . Young, N. D. Potential of association mapping and genomic selection to explore PI 88788 derived soybean cyst nematode resistance. The Plant Genome. (2014). 7(3),0039. https://doi.org/10.3835/plantgenome2013.11.0039
Bastien, M., Sonah, H., & Belzile, F. Genome wide association mapping of Sclerotinia sclerotiorum resistance in soybean with a genotyping‐by‐sequencing approach. The Plant Genome. (2014). 7(1),0030. https://doi.org/10.3835/plantgenome2013.10.0030
Bellaloui, N., Mengistu, A., Smith, J. R., Abbas, H. K., Accinelli, C., & Shier, W. T. Soybean Seed Sugars: A role in the mechanism of resistance to charcoal rot and potential use as biomarkers in selection. Plants. (2023). 12(2), 392. https://doi.org/10.3390/plants12020392
Bicudo Da Silva, R. F., Batistella, M., Moran, E., Celidonio, O. L. D. M., & Millington, J. D. The soybean trap: Challenges and risks for Brazilian producers. Frontiers in sustainable food systems. (2020). 4, 12. https://doi.org/10.3389/fsufs.2020.00012
Cattelan, A. J., & Dall'Agnol, A. The rapid soybean growth in Brazil. OCL. (2018). 25(1), D102. https://doi.org/10.1051/ocl/2017058
Chanchu, T., Yimram, T., Chankaew, S., Kaga, A., & Somta, P. Mapping QTLs Controlling Soybean Rust Disease Resistance in Chiang Mai 5, an Induced Mutant Cultivar. Genes. (2022). 14(1), 19. https://doi.org/10.3390/genes14010019
Chang, H.-X., Lipka, A. E., Domier, L. L., & Hartman, G. L. Characterization of disease resistance loci in the USDA soybean germplasm collection using genome-wide association studies. Phytopathology. (2016). 106(10), 1139-1151. https://doi.org/10.1094/PHYTO-01-16-0042-FI
Chen, K., Wang, Y., Zhang, R., Zhang, H., & Gao, C. CRISPR/Cas genome editing and precision plant breeding in agriculture. Annual review of plant biology. (2019). 70, 667-697. https://doi.org/10.1146/annurev-arplant-050718-100049
Companhia Nacional de Abastecimento (CONAB). (2022). Indicadores.
Conab, D., & das Safras, C. C.-S. H. (2021). Conab: Brasília: Brazil.
Coser, S. M., Chowda Reddy, R., Zhang, J., Mueller, D. S., Mengistu, A., Wise, K. A., Singh, A. K. Genetic architecture of charcoal rot (Macrophomina phaseolina) resistance in soybean revealed using a diverse panel. Frontiers in plant science. (2017). 8, 1626. https://doi.org/10.3389/fpls.2017.01626
FAOSTAT . Producer prices. Food and Agriculture Organization of the United Nations. 2023. https://www.fao.org/faostat/en/#data/PP.
Food, & Nations, A. O. o. t. U. (2022). Crops and livestock products: FAO Rome, Italy.
Fraanje, W., & Garnett, T. Soy: food, feed, and land use change. Foodsource: Building Blocks). Food Climate Research Network, University of Oxford. (2020). https://doi.org/10.56661/47e58c32
Garcia, A., Calvo, É. S., de Souza Kiihl, R. A., Harada, A., Hiromoto, D. M., & Vieira, L. G. E. Molecular mapping of soybean rust (Phakopsora pachyrhizi) resistance genes: discovery of a novel locus and alleles. Theoretical and Applied Genetics. (2008). 117(4), 545-553. https://doi.org/10.1007/s00122-008-0798-z
Gilani, G. S., & Anderson, J. J. (2002). Phytoestrogens and health: The American Oil Chemists Society. https://doi.org/10.1201/9781439822197
González, G., Fuentes, L., Moya-León, M. A., Sandoval, C., & Herrera, R. Characterization of two PR genes from Fragaria chiloensis in response to Botrytis cinerea infection: A comparison with Fragaria x ananassa. Physiological and Molecular Plant Pathology. (2013). 82, 73-80. https://doi.org/10.1016/j.pmpp.2013.02.001
Gupta, G. K., & Chauhan, G. (2005). Symptoms, identification and management of soybean diseases: National Research Centre for Soybean, Indian Council of Agricultural Research.
Hammond-Kosack, K. E., & Parker, J. E. Deciphering plant-pathogen communication: fresh perspectives for molecular resistance breeding. Current opinion in biotechnology. (2003). 14(2), 177-193. https://doi.org/10.1016/S0958-1669(03)00035-1
Hannah Ritchie.Is our appetite for soy driving deforestation in the Amazon? Published online at OurWorldInData.org. 2021. Retrieved from: 'https://ourworldindata.org/soy'
Hartman, G. L., Rupe, J. C., Sikora, E. J., Domier, L. L., Davis, J. A., & Steffey, K. L. (2015). Compendium of soybean diseases and pests: American Phytopathological Society St. Paul, MN.https://doi.org/10.1094/9780890544754
Heffner, E. L., Sorrells, M. E., & Jannink, J. L. Genomic selection for crop improvement. Crop Science. (2009). 49(1), 1-12.https://doi.org/10.2135/cropsci2008.08.0512
Hogervorst, E., Sadjimim, T., Yesufu, A., Kreager, P., & Rahardjo, T. High tofu intake is associated with worse memory in elderly Indonesian men and women. Dementia and geriatric cognitive disorders. (2008). 26(1), 50-57. https://doi.org/10.1159/000141484
International Grains Council (IGC), Grain Market Report, 16/11/2023.
Iquira, E., Humira, S., & François, B. Association mapping of QTLs for sclerotinia stem rot resistance in a collection of soybean plant introductions using a genotyping by sequencing (GBS) approach. BMC Plant Biology. (2015). 15, 1-12. https://doi.org/10.1186/s12870-014-0408-y
Karhoff, S., Lee, S., Mian, M. R., Ralston, T. I., Niblack, T. L., Dorrance, A. E., & McHale, L. K. Phenotypic characterization of a major quantitative disease resistance locus for partial resistance to Phytophthora sojae. Crop Science. (2019). 59(3), 968-980. https://doi.org/10.2135/cropsci2018.08.0514
Kaur, S., Dhillon, G. S., Brar, S. K., & Chauhan, V. B. Carbohydrate degrading enzyme production by plant pathogenic mycelia and microsclerotia isolates of Macrophomina phaseolina through koji fermentation. Industrial Crops and Products. (2012). 36(1), 140-148. https://doi.org/10.1016/j.indcrop.2011.08.020
Khambhati, V. H., Abbas, H. K., Sulyok, M., Tomaso-Peterson, M., Chen, J., & Shier, W. T. Mellein: Production in culture by Macrophomina phaseolina isolates from soybean plants exhibiting symptoms of charcoal rot and its role in pathology. Frontiers in plant science. (2023). 14, 1105590. https://doi.org/10.3389/fpls.2023.1105590
Khambhati, V. H., Abbas, H. K., Sulyok, M., Tomaso-Peterson, M., & Shier, W. T. First report of the production of mycotoxins and other secondary metabolites by Macrophomina phaseolina (Tassi) Goid. isolates from soybeans (Glycine max L.) symptomatic with charcoal rot disease. Journal of Fungi. (2020). 6(4), 332. https://doi.org/10.3390/jof6040332
Khan, Q., Chen, J. Y., Zeng, X. P., Qin, Y., Guo, D. J., Mahmood, A., Xing, Y. X. Transcriptomic exploration of a high sucrose mutant in comparison with the low sucrose mother genotype in sugarcane during sugar accumulating stage. GCB Bioenergy. (2021). 13(9), 1448-1465. https://doi.org/10.1111/gcbb.12868
Khan, Q., Kashif, M., & Shah, S. J. Comprehensive analysis of the mechanism underlying plastic microbiome and plants interaction, with future perspectives. (2022). https://doi.org/10.56946/jspae.v1i2.73
Khan, Q., Qin, Y., Guo, D.-J., Lu, Z., Xie, X.-Q., Yang, L.-T., Li, Y.-R. Proteome based comparative investigation of a high sucrose sugarcane mutant in contrast to the low sucrose mother variety by using TMT quantitative proteomics. Sugar Tech. (2022). 24(4), 1246-1259. https://doi.org/10.1007/s12355-022-01160-0
Khan, Q., Qin, Y., Guo, D.-J., Yang, L.-T., Song, X.-P., Xing, Y.-X., & Li, Y.-R. A Review of the diverse genes and molecules involved in sucrose metabolism and innovative approaches to improve sucrose content in sugarcane. Agronomy. (2023). 13(12), 2957. https://doi.org/10.3390/agronomy13122957
Khan, Q., Qin, Y., Guo, D.-J., Zeng, X.-P., Chen, J.-Y., Huang, Y.-Y., . . . Song, X.-P. Morphological, agronomical, physiological and molecular characterization of a high sugar mutant of sugarcane in comparison to mother variety. Plos one. (2022). 17(3), e0264990. https://doi.org/10.1371/journal.pone.0264990
Khan, S. N. Macrophomina phaseolina as causal agent for charcoal rot of sunflower. Mycopath. (2007). 5(2), 111-118.
Klos, K., Paz, M., Marek, L. F., Cregan, P., & Shoemaker, R. Molecular markers useful for detecting resistance to brown stem rot in soybean. Crop Science. (2000). 40(5), 1445-1452. https://doi.org/10.2135/cropsci2000.4051445x
Korte, A., & Farlow, A. The advantages and limitations of trait analysis with GWAS: a review. Plant methods. (2013). 9, 1-9. https://doi.org/10.1186/1746-4811-9-29
Kumar, P., & Dubey, R. C. (2023). Macrophomina Phaseolina: Ecobiology, Pathology and Management: Elsevier.
Kwon, D. Y., Daily III, J. W., Kim, H. J., & Park, S. Antidiabetic effects of fermented soybean products on type 2 diabetes. Nutrition Research. (2010). 30(1), 1-13. https://doi.org/10.1016/j.nutres.2009.11.004
Langenbach, C., Campe, R., Beyer, S. F., Mueller, A. N., & Conrath, U. Fighting Asian soybean rust. Frontiers in plant science. (2016). 7, 797. https://doi.org/10.3389/fpls.2016.00797
Lewers, K., Crane, E., Bronson, C., Schupp, J., Keim, P., & Shoemaker, R. Detection of linked QTL for soybean brown stem rot resistance in 'BSR 101'as expressed in a growth chamber environment. Molecular Breeding. (1999). 5, 33-42. https://doi.org/10.1023/A:1009634710039
Lin, F., Li, W., McCoy, A. G., Gao, X., Collins, P. J., Zhang, N., . . . Gu, C. Molecular mapping of quantitative disease resistance loci for soybean partial resistance to Phytophthora sansomeana. Theoretical and Applied Genetics. (2021). 134, 1977-1987. https://doi.org/10.1007/s00122-021-03799-x
Liu, K., & Liu, K. Chemistry and nutritional value of soybean components. Soybeans: chemistry, technology, and utilization. (1997). 25-113. https://doi.org/10.1007/978-1-4615-1763-4_2
Lorenz, A. J., Chao, S., Asoro, F. G., Heffner, E. L., Hayashi, T., Iwata, H., Jannink, J.-L. Genomic selection in plant breeding: knowledge and prospects. Advances in agronomy. (2011). 110, 77-123.https://doi.org/10.1016/B978-0-12-385531-2.00002-5
Mamidi, S., Lee, R. K., Goos, J. R., & McClean, P. E. Genome-wide association studies identifies seven major regions responsible for iron deficiency chlorosis in soybean (Glycine max). Plos one. (2014). 9(9), e107469. https://doi.org/10.1371/journal.pone.0107469
Mapa, D., & e Abastecimento, M. P. Valor da Produção Agropecuária é de R $5656 Bilhões.
Marquez, N., Giachero, M. L., Declerck, S., & Ducasse, D. A. Macrophomina phaseolina: General characteristics of pathogenicity and methods of control. Frontiers in plant science. (2021). 12, 634397. https://doi.org/10.3389/fpls.2021.634397
McLaughlin, M. S., Roy, M., Abbasi, P. A., Carisse, O., Yurgel, S. N., & Ali, S. Why Do We Need Alternative Methods for Fungal Disease Management in Plants? Plants. (2023). 12(22), 3822. https://doi.org/10.3390/plants12223822
Melchinger, A. E., Utz, H. F., & Schön, C. C. Quantitative trait locus (QTL) mapping using different testers and independent population samples in maize reveals low power of QTL detection and large bias in estimates of QTL effects. genetics. (1998). 149(1), 383-403. https://doi.org/10.1093/genetics/149.1.383
Mengistu, A., Ray, J. D., Smith, J. R., & Paris, R. L. Charcoal rot disease assessment of soybean genotypes using a colony‐forming unit index. Crop Science. (2007). 47(6), 2453-2461. https://doi.org/10.2135/cropsci2007.04.0186
Messina, M., McCaskill-Stevens, W., & Lampe, J. W. Addressing the soy and breast cancer relationship: review, commentary, and workshop proceedings. Journal of the National Cancer Institute. (2006). 98(18), 1275-1284. https://doi.org/10.1093/jnci/djj356
Meuwissen, T. H., Hayes, B. J., & Goddard, M. Prediction of total genetic value using genome-wide dense marker maps. genetics. (2001). 157(4), 1819-1829. https://doi.org/10.1093/genetics/157.4.1819
Moellers, T. C., Singh, A., Zhang, J., Brungardt, J., Kabbage, M., Mueller, D. S., . . . Chowda-Reddy, R. Main and epistatic loci studies in soybean for Sclerotinia sclerotiorum resistance reveal multiple modes of resistance in multi-environments. Scientific Reports. (2017). 7(1), 3554. https://doi.org/10.1038/s41598-017-03695-9
Mundt, C. C. Durable resistance: a key to sustainable management of pathogens and pests. Infection, Genetics and Evolution. (2014). 27, 446-455. https://doi.org/10.1016/j.meegid.2014.01.011
Mushtaq, M., Sakina, A., Wani, S. H., Shikari, A. B., Tripathi, P., Zaid, A., . . . Singh, A. K. Harnessing genome editing techniques to engineer disease resistance in plants. Frontiers in plant science. (2019). 10, 550. https://doi.org/10.3389/fpls.2019.00550
Nataraj, V., Maranna, S., Kumawat, G., Gupta, S., Rajput, L. S., Kumar, S., . . . Bhatia, V. S. Genetic inheritance and identification of germplasm sources for anthracnose resistance in soybean [Glycine max (L.) Merr.]. Genetic Resources and Crop Evolution. (2020). 67, 1449-1456. https://doi.org/10.1007/s10722-020-00917-4
Paris, R. L., Mengistu, A., Tyler, J., & Smith, J. Registration of soybean germplasm line DT97-4290 with moderate resistance to charcoal rot. Crop Science. (2006). 46(5), 2324. https://doi.org/10.2135/cropsci2005.09.0297
Pawlowski, M. L., Hill, C., & Hartman, G. Resistance to charcoal rot identified in ancestral soybean germplasm. Crop Science. (2015). 55(3), 1230-1235. https://doi.org/10.2135/cropsci2014.10.0687
Perez, P. T., Diers, B. W., Lundeen, P., Tabor, G. M., & Cianzio, S. R. Genetic analysis of new sources of soybean resistance to brown stem rot. Crop Science. (2010). 50(6), 2431-2439. https://doi.org/10.2135/cropsci2010.03.0159
Peterson, G., & Barnes, S. Genistein inhibition of the growth of human breast cancer cells: independence from estrogen receptors and the multi-drug resistance gene. Biochemical and biophysical research communications. (1991). 179(1), 661-667. https://doi.org/10.1016/0006-291X(91)91423-A
Pratap, A., Gupta, S. K., Kumar, J., & Solanki, R. Soybean. Technological Innovations in Major World Oil Crops, Volume 1: Breeding. (2012). 293-321. https://doi.org/10.1007/978-1-4614-0356-2_12
Ramezani, M., Shier, W. T., Abbas, H. K., Tonos, J. L., Baird, R. E., & Sciumbato, G. L. Soybean charcoal rot disease fungus Macrophomina phaseolina in Mississippi produces the phytotoxin (−)-botryodiplodin but no detectable phaseolinone. Journal of natural products. (2007). 70(1), 128-129. https://doi.org/10.1021/np060480t
Reis, E. M., Boaretto, C., & Danelli, A. L. D. Macrophomina phaseolina: density and longevity of microsclerotia in soybean root tissues and free on the soil, and competitive saprophytic ability. Summa Phytopathologica. (2014). 40, 128-133. https://doi.org/10.1590/0100-5405/1921
Ribaut, J.-M., & Hoisington, D. Marker-assisted selection: new tools and strategies. Trends in plant science. (1998). 3(6), 236-239. https://doi.org/10.1016/S1360-1385(98)01240-0
Roychowdhury, R., Das, S. P., Gupta, A., Parihar, P., Chandrasekhar, K., Sarker, U., . . . Sudhakar, C. Multi-omics pipeline and omics-integration approach to decipher plant's abiotic stress tolerance responses. Genes. (2023). 14(6), 1281. https://doi.org/10.3390/genes14061281
Sajeesh, P., Rao, M., & Shamarao, J. Screening of soybean (Glycine max (L.) Merill) genotypes against purple seed stain and anthracnose disease. Environ. Ecol. (2014). 32(3A), 1092-1095.
Sarr, M. P., Ndiaye, M., Groenewald, J. Z., & Crous, P. W. Genetic diversity in Macrophomina phaseolina, the causal agent of charcoal rot. (2014).
Sassenrath, G., Little, C., Roozeboom, K., Lin, X., & Jardine, D. Controlling soil-borne disease in soybean with a mustard cover crop. Kansas Agricultural Experiment Station Research Reports. (2019). 5(2), 14. https://doi.org/10.4148/2378-5977.7740
Sastry, M. S., & Murray, D. R. The contribution of trypsin inhibitors to the nutritional value of chick pea seed protein. Journal of the Science of Food and Agriculture. (1987). 40(3), 253-261. https://doi.org/10.1002/jsfa.2740400308
Schäfer, W. Molecular mechanisms of fungal pathogenicity to plants. Annual review of phytopathology. (1994). 32(1), 461-477. https://doi.org/10.1146/annurev.py.32.090194.002333
Sciences, N. A. o., Earth, D. o., Studies, L., Crops, C. o. G. E., Experience, P., & Prospects, F. (2016). Genetically engineered crops: experiences and prospects: National Academies Press.
Shoaib, A., Khan, K. A., Awan, Z. A., Jan, B. L., & Kaushik, P. Integrated management of charcoal rot disease in susceptible genotypes of mungbean with soil application of micronutrient zinc and green manure (prickly sesban). Frontiers in Microbiology. (2022). 13, 899224. https://doi.org/10.3389/fmicb.2022.899224
Smith, A. K. (1977). Soybeans: Chemistry and Technology.
Song, Q., Hyten, D. L., Jia, G., Quigley, C. V., Fickus, E. W., Nelson, R. L., & Cregan, P. B. Development and evaluation of SoySNP50K, a high-density genotyping array for soybean. Plos one. (2013). 8(1), e54985. https://doi.org/10.1371/journal.pone.0054985
Song, Q., Yan, L., Quigley, C., Fickus, E., Wei, H., Chen, L., Hyten, D. Soybean BARCSoySNP6K: An assay for soybean genetics and breeding research. The Plant Journal. (2020). 104(3), 800-811. https://doi.org/10.1111/tpj.14960
The Soy Hopper. New study finds U.S. soybean industry has $115 billion impact on the American economy. United Soybean Board.2020, March 19. https://www.unitedsoybean.org/hopper/newstudyfinds-us-soybean-industry-has-115-billion-impact-on-the-american-economy/.
Šućur Elez, J., Petrović, K., Crnković, M., Krsmanović, S., Rajković, M., Kaitović, Ž., & Malenčić, Đ. Susceptibility of the Most Popular Soybean Cultivars in South-East Europe to Macrophomina phaseolina (Tassi) Goid. Plants. (2023). 12(13), 2467. https://doi.org/10.3390/plants12132467
Sun, C.-L., Yuan, J.-M., Arakawa, K., Low, S.-H., Lee, H.-P., & Yu, M. C. Dietary soy and increased risk of bladder cancer: the Singapore Chinese Health Study. Cancer Epidemiology Biomarkers & Prevention. (2002). 11(12), 1674-1677.
Sun, J., Li, L., Zhao, J., Huang, J., Yan, Q., Xing, H., & Guo, N. Genetic analysis and fine mapping of RpsJS, a novel resistance gene to Phytophthora sojae in soybean [Glycine max (L.) Merr.]. Theoretical and Applied Genetics. (2014). 127, 913-919. https://doi.org/10.1007/s00122-014-2266-2
Sun, L., Nasrullah, Ke, F., Nie, Z., Wang, P., & Xu, J. Citrus genetic engineering for disease resistance: Past, present and future. International Journal of Molecular Sciences. (2019). 20(21), 5256. https://doi.org/10.3390/ijms20215256
Tripathi, N., Tripathi, M. K., Tiwari, S., & Payasi, D. K. Molecular breeding to overcome biotic stresses in soybean: update. Plants. (2022). 11(15), 1967. https://doi.org/10.3390/plants11151967
Tripodi, P. Methods of development of biparental mapping populations in horticultural crops. Crop Breeding: Genetic Improvement Methods. (2021). 1-12. https://doi.org/10.1007/978-1-0716-1201-9_1
Twizeyimana, M., Hill, C., Pawlowski, M., Paul, C., & Hartman, G. A cut-stem inoculation technique to evaluate soybean for resistance to Macrophomina phaseolina. Plant Disease. (2012). 96(8), 1210-1215. https://doi.org/10.1094/PDIS-02-12-0126-RE
United Nations Economic Commission for Latin America and the Caribbean. (2022). How
to finance sustainable development: Recovery from the effects of COVID-19 in Latin America and the Caribbean (COVID-19 Special Report No. 13). https://repositorio.cepal.org/handle/11362/47721.
United States Department of Agriculture Foreign Agricultural Service (USDA), Oilseeds: World Markets and Trade Report, December 2023.
Vuong, T., Sonah, H., Meinhardt, C., Deshmukh, R., Kadam, S., Nelson, R., Nguyen, H. Genetic architecture of cyst nematode resistance revealed by genome-wide association study in soybean. BMC genomics. (2015). 16, 1-13. https://doi.org/10.1186/s12864-015-1811-y
Wen, Z., Tan, R., Yuan, J., Bales, C., Du, W., Zhang, S., Cregan, P. B. Genome-wide association mapping of quantitative resistance to sudden death syndrome in soybean. BMC genomics. (2014). 15, 1-11. https://doi.org/10.1186/1471-2164-15-809
Whitham, S. A., Qi, M., Innes, R. W., Ma, W., Lopes-Caitar, V., & Hewezi, T. Molecular soybean-pathogen interactions. Annual review of phytopathology. (2016). 54, 443-468. https://doi.org/10.1146/annurev-phyto-080615-100156
Wolke, R. L. Where There's Smoke, There's a Fryer. The Washington Post. (2007).
Young, V. R. Soy protein in relation to human protein and amino acid nutrition. Journal of the American Dietetic Association. (1991). 91(7), 828-835. https://doi.org/10.1016/S0002-8223(21)01237-2
Zhang, J., Song, Q., Cregan, P. B., Nelson, R. L., Wang, X., Wu, J., & Jiang, G.-L. Genome-wide association study for flowering time, maturity dates and plant height in early maturing soybean (Glycine max) germplasm. BMC genomics. (2015). 16, 1-11. https://doi.org/10.1186/s12864-015-1441-4
Zhao, X., Han, Y., Li, Y., Liu, D., Sun, M., Zhao, Y.,Huang, L. Loci and candidate gene identification for resistance to Sclerotinia sclerotiorum in soybean (Glycine max L. Merr.) via association and linkage maps. The Plant Journal. (2015). 82(2), 245-255. https://doi.org/10.1111/tpj.12810
Downloads
Published
How to Cite
Issue
Section
License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.