Designing of Smart Gene Resources and Computational Approaches For Sustainable Environment; Opportunities and Future Challenges

Authors

  • Nimra Riasat Pakistan Institute of Engineering and Applied Sciences (PIEAS), Nilore, Islamabad, Punjab, Pakistan.
  • Amara Sana Pakistan Institute of Engineering and Applied Sciences (PIEAS), Nilore, Islamabad, Punjab, Pakistan.
  • Muhammad Hassaan Khan Agricultural Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), P.O. Box 577, Jhang Road, Faisalabad, Punjab, Pakistan.
  • Tahira Kabeer College of Agriculture and Biotechnology, Zhejiang University, China.
  • Laiba Sehar Pakistan Institute of Engineering and Applied Sciences (PIEAS), Nilore, Islamabad, Punjab, Pakistan.
  • Muhammad Tahir Khan Pakistan Institute of Engineering and Applied Sciences (PIEAS), Nilore, Islamabad, Punjab, Pakistan.
  • Muhammad Arshad Pakistan Institute of Engineering and Applied Sciences (PIEAS), Nilore, Islamabad, Punjab, Pakistan.

DOI:

https://doi.org/10.56946/jspae.v3i2.492

Keywords:

Gene isolation, codon optimization, gene synthesis, gene designing tools, synthetic biology and biopharming

Abstract

Gene revolution is very successful to meet the food challenges resulting from climate change and global warming. Genomic and gene database is ever growing owing to advancement and development of modern biotechnological techniques and machinery. During 1970, 80s, gene isolation was utilized to develop gene resources from original biological systems which was inherently-embraced with challenges of unoptimized protein coding DNA sequences as well as unpredicted expression pattern and levels. Originally, DNA sequences are prone to low and unstable expression in target organisms. So, codon optimization process changed the scenario all the way and most of the problems associated with unmodified sequence has been addressed. At present plethora of softwares are available that fairly process the DNA sequence to make it highly expressible and stable in heterologous systems. Different softwares are being used effectively for synthetic gene design such as, EuGene, COOL, D-Tailor, Costar. Bioinformatic tools have two main functions to data gathering and optimization of gene sequence. DNA sequences is retrieved and processed for Codon adaptation index, GC content, relative synonymous codon usage (RSCU), Protein structure, orthologs, codon pair bias (CPB) and kozak sequences. Codon optimization holds a great potential to develop gene resources which are host friendly and stable for desired traits. In future, gene resources and crop improvement will go side by side for precise and accurate crop improvement and in solving the plant improvement issues previously unaddressed. 

References

Ahmad, I., Singh, A. K., Mohd, S., Katari, S. K., Nalamolu, R. M., Ahmad, A., . . . Nadeem, M. S. In silico insights into the arsenic binding mechanism deploying application of computational biology-based toolsets. ACS omega. (2024). 9(7), 7529-7544. https://doi.org/10.1021/acsomega.3c06313

Alberts, B., Johnson, A., Lewis, J., Raff, M., Roberts, K., & Walter, P. (2002). Isolating, cloning, and sequencing DNA. In Molecular Biology of the Cell. 4th edition: Garland Science.

Angov, E. Codon usage: nature's roadmap to expression and folding of proteins. Biotechnology journal. (2011). 6(6), 650-659. https://doi.org/10.1002/biot.201000332

Athey, J., Alexaki, A., Osipova, E., Rostovtsev, A., Santana-Quintero, L. V., Katneni, U.,Kimchi-Sarfaty, C. A new and updated resource for codon usage tables. BMC bioinformatics. (2017). 18, 1-10. https://doi.org/10.1186/s12859-017-1793-7

Ayan, A., Meriç, S., Gümüş, T., & Atak, Ç. Next generation of transgenic plants: From farming to pharming. Genetically modified plants and beyond. (2022). 49. https://doi.org/10.5772/intechopen.102004

Begna, T. Role of molecular markers in crop improvement. International Journal of Agriculture and Biosciences. (2021). 10(1): 17-26.

Chen, V., Yang, M., Cui, W., Kim, J. S., Talwalkar, A., & Ma, J. Applying interpretable machine learning in computational biology-pitfalls, recommendations and opportunities for new developments. Nature methods. (2024). 21(8), 1454-1461. https://doi.org/10.1038/s41592-024-02359-7

Chin, J. X., Chung, B. K.-S., & Lee, D.-Y. Codon Optimization OnLine (COOL): a web-based multi-objective optimization platform for synthetic gene design. Bioinformatics. (2014). 30(15), 2210-2212. https://doi.org/10.1093/bioinformatics/btu192

Das, A. P., & Agarwal, S. M. Recent advances in the area of plant-based anti-cancer drug discovery using computational approaches. Molecular Diversity. (2024). 28(2), 901-925. https://doi.org/10.1007/s11030-022-10590-7

Diez, M., Medina-Muñoz, S. G., Castellano, L. A., da Silva Pescador, G., Wu, Q., & Bazzini, A. A. iCodon customizes gene expression based on the codon composition. Scientific reports. (2022). 12(1), 12126. https://doi.org/10.1038/s41598-022-15526-7

Dixit, S., Kumar, A., Srinivasan, K., Vincent, P. D. R., & Ramu Krishnan, N. Advancing genome editing with artificial intelligence: opportunities, challenges, and future directions. Frontiers in Bioengineering and Biotechnology. (2024). 11, 1335901. https://doi.org/10.3389/fbioe.2023.1335901

Esmaeili, N., Shen, G., & Zhang, H. Genetic manipulation for abiotic stress resistance traits in crops. Frontiers in Plant Science. (2022). 13, 1011985. https://doi.org/10.3389/fpls.2022.1011985

Fang, G., & Liang, H. An integrated algorithm for designing oligodeoxynucleotides for gene synthesis. Frontiers in genetics. (2022). 13, 836108. https://doi.org/10.3389/fgene.2022.836108

Feng, Z., Li, X., Fan, B., Zhu, C., & Chen, Z. Maximizing the production of recombinant proteins in plants: from transcription to protein stability. International Journal of Molecular Sciences. (2022). 23(21), 13516. https://doi.org/10.3390/ijms232113516

Fu, H., Liang, Y., Zhong, X., Pan, Z., Huang, L., Zhang, H., Liu, Z. Codon optimization with deep learning to enhance protein expression. Scientific reports. (2020). 10(1), 17617. https://doi.org/10.1038/s41598-020-74091-z

Gaspar, P., Oliveira, J. L., Frommlet, J., Santos, M. A., & Moura, G. EuGene: maximizing synthetic gene design for heterologous expression. Bioinformatics. (2012). 28(20), 2683-2684. https://doi.org/10.1093/bioinformatics/bts465

Gayathiri, E., Prakash, P., Kumaravel, P., Jayaprakash, J., Ragunathan, M. G., Sankar, S., Govindasamy, R. Computational approaches for modeling and structural design of biological systems: A comprehensive review. Progress in Biophysics and Molecular Biology. (2023). https://doi.org/10.1016/j.pbiomolbio.2023.08.002

Gould, N., Hendy, O., & Papamichail, D. Computational tools and algorithms for designing customized synthetic genes. Frontiers in Bioengineering and Biotechnology. (2014). 2, 41. https://doi.org/10.3389/fbioe.2014.00041

Grote, A., Hiller, K., Scheer, M., Münch, R., Nörtemann, B., Hempel, D. C., & Jahn, D. JCat: a novel tool to adapt codon usage of a target gene to its potential expression host. Nucleic acids research. (2005). 33(suppl_2), W526-W531. https://doi.org/10.1093/nar/gki376

Guimaraes, J. C., Rocha, M., Arkin, A. P., & Cambray, G. D-Tailor: automated analysis and design of DNA sequences. Bioinformatics. (2014). 30(8), 1087-1094. https://doi.org/10.1093/bioinformatics/btt742

Gupta, R., Randerath, K., & Randerath, E. Sequence analysis of small amounts of nonradioactive oligoribonucleotides containing ribose-methylated nucleosides by a combination of 3H-and 32P-labeling techniques. Analytical Biochemistry. (1976). 76(1), 269-280. https://doi.org/10.1016/0003-2697(76)90285-2

Gustafsson, C., Govindarajan, S., & Minshull, J. Codon bias and heterologous protein expression. Trends in biotechnology. (2004). 22(7), 346-353. https://doi.org/10.1016/j.tibtech.2004.04.006

Hattaf, K. A new mixed fractional derivative with applications in computational biology. Computation. (2024). 12(1), 7. https://doi.org/10.3390/computation12010007

Hoose, A., Vellacott, R., Storch, M., Freemont, P. S., & Ryadnov, M. G. DNA synthesis technologies to close the gene writing gap. Nature Reviews Chemistry. (2023). 7(3), 144-161. https://doi.org/10.1038/s41570-022-00456-9

Hussain, K., Lone, S., Mushtaq, F., Malik, A., Narayan, S., Rashid, M., & Nazir, G. (2022). Abiotic Stresses and Their Management in Vegetable Crop Production. In Advances in Plant Defense Mechanisms: IntechOpen. https://doi.org/10.5772/intechopen.105453

Javed, A. Artificial Gene Synthesis In Vitro. International Journal of Science and Nature(IJSN). (2013). Vol-4, 124-130.

Jenkins, M. C., Parker, C., O'Brien, C., Campos, P., Tucker, M., & Miska, K. Effects of codon optimization on expression in Escherichia coli of protein-coding DNA sequences from the protozoan Eimeria. Journal of Microbiological Methods. (2023). 211, 106750. https://doi.org/10.1016/j.mimet.2023.106750

Kumar, S. Abiotic stresses and their effects on plant growth, yield and nutritional quality of agricultural produce. Int. J. Food Sci. Agric. (2020). 4(4), 367-378. https://doi.org/10.26855/ijfsa.2020.12.002

Lithwick, G., & Margalit, H. Hierarchy of sequence-dependent features associated with prokaryotic translation. Genome research. (2003). 13(12), 2665-2673. https://doi.org/10.1101/gr.1485203

Liu, X., Deng, R., Wang, J., & Wang, X. COStar: a D-star Lite-based dynamic search algorithm for codon optimization. Journal of theoretical biology. (2014). 344, 19-30. https://doi.org/10.1016/j.jtbi.2013.11.022

Lou, X.-M., Yao, Q.-H., Zhang, Z., Peng, R.-H., Xiong, A.-S., & Wang, H.-K. Expression of the human hepatitis B virus large surface antigen gene in transgenic tomato plants. Clinical and Vaccine Immunology. (2007). 14(4), 464-469. https://doi.org/10.1128/CVI.00321-06

Ma, J. K. C., Barros, E., Bock, R., Christou, P., Dale, P. J., Dix, P. J., Pezzotti, M. Molecular farming for new drugs and vaccines: current perspectives on the production of pharmaceuticals in transgenic plants. EMBO reports. (2005). 6(7), 593-599. https://doi.org/10.1038/sj.embor.7400470

Majeed, A., Kaur, H., & Bhardwaj, P. Selection constraints determine preference for A/U-ending codons in Taxus contorta. Genome. (2020). 63(4), 215-224. https://doi.org/10.1139/gen-2019-0165

Makhzoum, A., Benyammi, R., Moustafa, K., & Trémouillaux-Guiller, J. Recent advances on host plants and expression cassettes' structure and function in plant molecular pharming. BioDrugs. (2014). 28, 145-159. https://doi.org/10.1007/s40259-013-0062-1

Margolin, E. A., Strasser, R., Chapman, R., Williamson, A.-L., Rybicki, E. P., & Meyers, A. E. Engineering the plant secretory pathway for the production of next-generation pharmaceuticals. Trends in biotechnology. (2020). 38(9), 1034-1044. https://doi.org/10.1016/j.tibtech.2020.03.004

Mishra, S., Panda, S., Akcil, A., & Dembele, S. Biotechnological avenues in mineral processing: Fundamentals, applications and advances in bioleaching and bio-beneficiation. Mineral Processing and Extractive Metallurgy Review. (2023). 44(1), 22-51. https://doi.org/10.1080/08827508.2021.1998043

Naveen, A. K., & Sontakke, M. A review on regulatory aspects, challenges and public perception in acceptance of genetically modified foods. Food science and biotechnology. (2024). 33(4), 791-804. https://doi.org/10.1007/s10068-023-01481-0

Passricha, N., Saifi, S. K., Negi, H., Tuteja, R., & Tuteja, N. (2020). Chapter 20 - Transgenic approach in crop improvement. In N. Tuteja, R. Tuteja, N. Passricha, & S. K. Saifi (Eds.), Advancement in Crop Improvement Techniques (pp. 329-350): Woodhead Publishing. https://doi.org/10.1016/B978-0-12-818581-0.00020-6

Peccoud, J. (2016). Synthetic Biology: fostering the cyber-biological revolution. In (Vol. 1, pp. ysw001): Oxford University Press. https://doi.org/10.1093/synbio/ysw001

Peng, Y., Lin, W., Cai, W., & Arora, R. Overexpression of a Panax ginseng tonoplast aquaporin alters salt tolerance, drought tolerance and cold acclimation ability in transgenic Arabidopsis plants. Planta. (2007). 226, 729-740. https://doi.org/10.1007/s00425-007-0520-4

Prajval, V., Krishnamoorthi, A., Thakur, R., Ruchitha, T., Kapoor, M., Singh, A., & Chittibomma, K. From Code to Crop: How Bioinformatics is Transforming Crop Genomics in Modern Agriculture and Bettering Environment. Journal of Advances in Biology & Biotechnology. (2024). 27(4), 27-49. https://doi.org/10.9734/jabb/2024/v27i4737

Puigbo, P., Guzmán, E., Romeu, A., & Garcia-Vallvé, S. OPTIMIZER: a web server for optimizing the codon usage of DNA sequences. Nucleic acids research. (2007). 35(suppl_2), W126-W131. https://doi.org/10.1093/nar/gkm219

Raj, S. R. G., & Nadarajah, K. QTL and candidate genes: Techniques and advancement in abiotic stress resistance breeding of major cereals. International Journal of Molecular Sciences. (2022). 24(1), 6. https://doi.org/10.3390/ijms24010006

Rehbein, P., Berz, J., Kreisel, P., & Schwalbe, H. "CodonWizard"-An intuitive software tool with graphical user interface for customizable codon optimization in protein expression efforts. Protein Expression and Purification. (2019). 160, 84-93. https://doi.org/10.1016/j.pep.2019.03.018

Riggs, A. D., Itakura, K., Crea, R., Hirose, T., Kraszewski, A., Goeddel, D., Heyneker, H. L. (1980). Synthesis, cloning, and expression of hormone genes in Escherichia coli. Paper presented at the Proceedings of the 1979 Laurentian Hormone Conference. https://doi.org/10.1016/B978-0-12-571136-4.50014-0

Sarkar, S., Ganapathysubramanian, B., Singh, A., Fotouhi, F., Kar, S., Nagasubramanian, K., Krishnamurthy, A. Cyber-agricultural systems for crop breeding and sustainable production. Trends in Plant Science. (2024). 29(2), 130-149. https://doi.org/10.1016/j.tplants.2023.08.001

Schwartz, M., Lo, H., Zhou, J., Yang, P., & Liao, A. Gene Synthesis: A Cost-Effective Alternative to Traditional Molecular Cloning. Journal of Biomolecular Techniques: JBT. (2011). 22(Suppl), S31.

Şen, A., Kargar, K., Akgün, E., & Pınar, M. Ç. Codon optimization: a mathematical programing approach. Bioinformatics. (2020). 36(13), 4012-4020. https://doi.org/10.1093/bioinformatics/btaa248

Sequeira, A. F., Bras, J. L., Guerreiro, C. I., Vincentelli, R., & Fontes, C. M. Development of a gene synthesis platform for the efficient large scale production of small genes encoding animal toxins. BMC biotechnology. (2016). 16, 1-13. https://doi.org/10.1186/s12896-016-0316-3

Shanmugaraj, B., I. Bulaon, C. J., & Phoolcharoen, W. Plant molecular farming: A viable platform for recombinant biopharmaceutical production. Plants. (2020). 9(7), 842. https://doi.org/10.3390/plants9070842

Sharkey, C. M., Lekveishvili, M., de la Rosa, T., & Danskin, K. Enhancing Gene Synthesis Security: An Updated Framework for Synthetic Nucleic Acid Screening and the Responsible Use of Synthetic Biological Materials. Applied Biosafety. (2024). https://doi.org/10.1089/apb.2023.0036

Sharma, A., Kumar, V., Shahzad, B., Ramakrishnan, M., Singh Sidhu, G. P., Bali, A. S., . . . Khanna, K. Photosynthetic response of plants under different abiotic stresses: a review. Journal of Plant Growth Regulation. (2020). 39, 509-531. https://doi.org/10.1007/s00344-019-10018-x

Sharma, V. (2020). Bioinformatics and its applications in environmental science and health and its applications in other disciplines. In: Sambodhi.

Sijmons, P. C., Dekker, B. M., Schrammeijer, B., Verwoerd, T. C., Van Den Elzen, P. J., & Hoekema, A. Production of correctly processed human serum albumin in transgenic plants. Bio/technology. (1990). 8(3), 217-221. https://doi.org/10.1038/nbt0390-217

Villalobos, A., Ness, J. E., Gustafsson, C., Minshull, J., & Govindarajan, S. Gene Designer: a synthetic biology tool for constructing artificial DNA segments. BMC bioinformatics. (2006). 7, 1-8. https://doi.org/10.1186/1471-2105-7-285

Villalobos-López, M. A., Arroyo-Becerra, A., Quintero-Jiménez, A., & Iturriaga, G. Biotechnological advances to improve abiotic stress tolerance in crops. International Journal of Molecular Sciences. (2022). 23(19), 12053. https://doi.org/10.3390/ijms231912053

Webster, G. R., Teh, A. Y. H., & Ma, J. K. C. Synthetic gene design-The rationale for codon optimization and implications for molecular pharming in plants. Biotechnology and bioengineering. (2017). 114(3), 492-502. https://doi.org/10.1002/bit.26183

Young, L., & Dong, Q. Two‐step total gene synthesis method. Nucleic acids research. (2004). 32(7), e59-e59. https://doi.org/10.1093/nar/gnh058

Zhang, Y., Luo, M., Wu, P., Wu, S., Lee, T.-Y., & Bai, C. Application of computational biology and artificial intelligence in drug design. International Journal of Molecular Sciences. (2022). 23(21), 13568. https://doi.org/10.3390/ijms232113568

Zhou, Z., Dang, Y., Zhou, M., Li, L., Yu, C.-h., Fu, J., Liu, Y. Codon usage is an important determinant of gene expression levels largely through its effects on transcription. Proceedings of the National Academy of Sciences. (2016). 113(41), E6117-E6125. https://doi.org/10.1073/pnas.1606724113

Downloads

Published

2024-12-12
CITATION
DOI: 10.56946/jspae.v3i2.492

How to Cite

Riasat, N., Sana, A., Khan, M. H., Kabeer, T., Sehar, L., Khan, M. T., & Arshad, M. (2024). Designing of Smart Gene Resources and Computational Approaches For Sustainable Environment; Opportunities and Future Challenges. Journal of Soil, Plant and Environment, 3(2), 86–104. https://doi.org/10.56946/jspae.v3i2.492

Issue

Section

Review Article