Analysis of Genetic Diversity, Correlation, and Phenotypic Path Coefficients in Hybrids of Kenaf (Hibiscus Cannabinus L.) Cultivated for High Fibre Yield

Authors

  • Md Al-Mamun Laboratory of Climate-Smart Food Crop Production, Institute of Tropical Agriculture and Food Security (ITAFoS), Universiti Putra Malaysia (UPM), 43400, UPM Serdang, Selangor, Malaysia. https://orcid.org/0000-0002-9970-3122
  • Mohd Rafii Yusop Laboratory of Climate-Smart Food Crop Production, Institute of Tropical Agriculture and Food Security (ITAFoS), Universiti Putra Malaysia (UPM), 43400, UPM Serdang, Selangor, Malaysia
  • Md Mahmudul Hasan Khan Laboratory of Climate-Smart Food Crop Production, Institute of Tropical Agriculture and Food Security (ITAFoS), Universiti Putra Malaysia (UPM), 43400, UPM Serdang, Selangor, Malaysia https://orcid.org/0000-0001-8195-3783

DOI:

https://doi.org/10.56946/jspae.v3i2.494

Keywords:

Correlation, path coefficient, direct effect, heritability, kenaf mutants

Abstract

Kenaf is an economically important fiber crop globally for multipurpose industrial uses such as paper making, interior car components and building boards. Correlation and path coefficient analysis help breeders create breeding procedures that maximize yield through selection by assisting in the understanding of trait interactions. To develop selection criteria for high fibre yield, this research examined the direct and indirect effects of yield and yield-related traits among 36 kenaf hybrids. The pooled analysis of variance over two seasons showed highly significant differences among genotypes and genotype-by-season interaction for all traits except for stem top diameter and plant height. The fibre weight substantially correlated with seven traits at both the phenotypic and genotypic levels. Hence, selection based on these traits will effectively increase kenaf fibre yield. The path coefficient analysis revealed the maximum contribution of core diameter to fibre yield followed by fresh stem weight without leaves and pod. The first five principal component analyses (PCA) accounted for 91.8% variation between genotypes based on a correlation matrix of all the quantitative traits. For the development of kenaf varieties with acceptable yield, effective selection can be based on stem base diameter, stem middle diameter, core diameter, nodes number, stick weight, fresh stem weight with leaves and pod, and fresh stem weight without leaves and pod.

References

Al-Mamun, M., M. S. Hossain, R. Khatun, A. S. M. Yahiya, and M. M. Islam. Genetic Variability, Character Association and Path Analysis of white Jute (Corchorus capsularis L.). Journal of Sher-e-Bangla Agricultural University. (2010). 4(1): 39-42.

Al-Mamun, M., M. Rafii, Y. Oladosu, A. B. Misran, Z. Berahim, Z. Ahmad, F. Arolu, and M. H. Khan. "Genetic Diversity among Kenaf Mutants as Revealed by Qualitative and Quantitative Traits." Journal of Natural Fibers. (2020). 1-18. https://doi.org/10.1080/15440478.2020.1856268

Al-Mamun, M., M. Y. Rafii, A. B. Misran, Z. Berahim, Z., Ahmad, M. M. H. Khan, Y. Oladosu, and F. Arolu. Kenaf (Hibiscus Cannabinus L.): A promising fiber crop with potential for genetic improvement utilizing both conventional and molecular approaches. Journal of Natural Fibers. (2023). 20(1): 2145410. https://doi.org/10.1080/15440478.2022.2145410

Assefa, K., S. Ketema, H. Tefera, H. T. Nguyen, A. Blum, M. Ayele, G. Bai, B. Simane, and T. Kefyalew. Diversity among germplasm lines of the Ethiopian cereal tef [Eragrostis tef (Zucc.) Trotter]. Euphytica. (1999). 106(1): 87-97. https://doi.org/10.1023/A:1003582431039

Benesty, J., J. Chen, Y. Huang, and I. Cohen. Pearson correlation coefficient. In Noise reduction in speech processing (pp. 1-4). Springer, Berlin, Heidelberg. (2009). https://doi.org/10.1007/978-3-642-00296-0_5

Bhor, T. J., D. P. Pacharne, and R. S. Wagh. "Genetic variability, correlation, and path analysis studies in Jute (Corchorus olitorius) germplasm lines." Journal of Pharmacognosy and Phytochemistry. (2020). 9(5): 359-364.

Biswas, S. K., S. N. Islam, D. H. Sarker, M. Moniruzzaman, and M. Z. Tareq. "Genetic variability, heritability, and genetic advance for yield related characters of tossa jute (Corchorus olitorius) genotypes." Journal of Bioscience and Agriculture Research. (2018). 17(1): 1416-1421. https://doi.org/10.18801/jbar.170118.175

Bocanski, J., Z. Sreckov and A. Nastasic. Genetic and phenotypic relationship between grain yield and components of grain yield of maize (Zea mays L.). Genetika. (2009). 41(2): 145-154. https://doi.org/10.2298/GENSR0902145B

Bondari, K. Path Analysis in Agricultural Research, Conference on Applied Statistics in Agriculture. (1990). https://doi.org/10.4148/2475-7772.1439

Dauda, S. M., D. Ahmad, A. Khalina, and J. Othman. Performance evaluation of a tractor mounted kenaf harvesting machine. Academic Research International. (2013). 4(2):70-81.

Elgart, M., M. O. Goodman, C. Isasi, H. Chen, A. C. Morrison, P. S. de Vries, and Sofer, T. Correlations between complex human phenotypes vary by genetic background, gender, and environment. Cell Reports Medicine. (2022). 3(12). https://doi.org/10.1016/j.xcrm.2022.100844

Ene, C. O., P. E. Ogbonna, C. U. Agbo, and U. P. Chukwudi. Studies of phenotypic and genotypic variation in sixteen cucumber genotypes. Chilean journal of agricultural research. (2016). 76(3): 307-313. https://doi.org/10.4067/S0718-58392016000300007

Falconer, D. S. and T. F. C. Mackay. Introduction to quantitative genetics, Ed 4. Longmans Green, Harlow, Essex, UK. (1996).

Faruq, G., M. M. Rahman, H. Zabed, and A. Latif. "Assessment of genetic variation in different kenaf (Hibiscus cannabinus) genotypes using morpho-agronomic traits and RAPD markers." International Journal of Agriculture and Biology. (2015). 17(3): 507-514. https://doi.org/10.17957/IJAB/17.3.14.452

Golam, F., M. A. Alamgir, M. M. Rahman, B. Subha, and M. R. Motior. "Evaluation of genetic variability of kenaf (Hibiscus cannabinus L.) from different geographic origins using morpho-agronomic traits and multivariate analysis." Australian Journal of Crop Science. (2011). 5(13): 1882-1890.

Ibrahim, M. M., and R. M. Hussein. "Variability, heritability, and genetic advance in some genotypes of roselle (Hibiscus sabdariffa L.)." World Journal of Agricultural Sciences. (2006). 2(3): 340-345.

Islam, M. S., A. L. Nasreen, S. E. Begum, and S. A. Haque. "Correlated response and path analysis in Tossa jute (Corchorus olitorius L.)." Bangladesh Journal of Botany. (2004). 33(2): 99-102.

Islam, M. S., M. N. Uddin, M. M. Haque, and M. N. Islam. "Path coefficient analysis for some fibre yield related traits in white jute (Corchorus capsularis L.)." Pakistan Journal of Biological Sciences. (2001). 4(1): 47-49. https://doi.org/10.3923/pjbs.2001.47.49

Jakhar, D. S., R. Singh, and A. Kumar. "Studies on path coefficient analysis in maize (Zea mays L.) for grain yield and its attributes." International Journal of Current Microbiology and Applied Sciences. (2017). 6(4): 2851-2856. https://doi.org/10.20546/ijcmas.2017.604.327

Johnson, H. W., H. F. Robinson, and R. E. Comstock. Genotypic and phenotypic correlations in Soybeans and their implications in selection. Agronomy Journal. (1995). 47: 477-483. https://doi.org/10.2134/agronj1955.00021962004700100008x

Kashiani P. and G. Saleh. Estimation of genetic correlations on sweet corn inbred lines using SAS mixed model. American Journal of Agricultural & Biological Science. (2010). 5(3): 309-314. https://doi.org/10.3844/ajabssp.2010.309.314

Khan, M., M. Y., Rafii, S. I., Ramlee, M. Jusoh, and M. Al-Mamun. Genetic Variability, Heritability, and Clustering Pattern Exploration of Bambara Groundnut (Vigna subterranea L. Verdc) Accessions for the Perfection of Yield and Yield-Related Traits. BioMed research international. (2020). https://doi.org/10.1155/2020/2195797

Khatun, R., M. A. Hossain, M. H. Rashid, M. S. H. Bhuiyan, and M. Al-Mamun. "Correlation and regression between fibre yield and other plant characters in tossa jute." International Journal of Biology and Biotechnology. (2007). 4(4): 399-401.

McWhirter, J., R. Duffin, P. Brehm, and J. Oravec. Computational methods for solving static field and eddy current problems via Fredholm integral equations. IEEE Transactions on Magnetics. (1979). 15(3): 1075-1084. https://doi.org/10.1109/TMAG.1979.1070317

Mostofa, M. G., M. R. Islam, A. T. M. M. Alam, S. M. Ali, and M. A. F. Mollah. "Genetic variability, heritability and correlation studies in kenaf (Hibiscus cannabinus L)." Journal of Biological Sciences. (2002). 2(6): 422-424. https://doi.org/10.3923/jbs.2002.422.424

Nayak, B. K., and B. Baisakh. "Character association and path analysis in tossa jute (Corchorus olitorius L.)." Environment and Ecology. (2008). 26(1A): 361-363.

NTSYS-pc, N. T., and N. Taxonomy. Multivariate Analysis System, version 2.2. Exeter Software: Setauket, NY, USA. (2005).

Oladosu, Y., M. Y. Rafii, N. Abdullah, G. Hussin, A. Ramli, H. A. Rahim, G. Miah, and M. Usman. "Principle and application of plant mutagenesis in crop improvement: a review." Biotechnology & Biotechnological Equipment. (2016). 30(1): 1-16. https://doi.org/10.1080/13102818.2015.1087333

Oladosu, Y., M. Y. Rafii, N. Abdullah, M. A. Malek, H. A. Rahim, G. Hussin, M. R. Ismail, M. A. Latif, and I. Kareem. "Genetic variability and diversity of mutant rice revealed by quantitative traits and molecular markers." Agrociencia. (2015). 49(3): 249-266.

Oladosu, Y., M. Y. Rafii, U. Magaji, N. Abdullah, G. Miah, S. C. Chukwu, G. Hussin, A. Ramli, and I. Kareem. "Genotypic and phenotypic relationship among yield components in rice under tropical conditions." BioMed research international. (2018). 8936767. https://doi.org/10.1155/2018/8936767

Olawamide, D. O. and L. S. Fayeun. Correlation and path coefficient analysis for yield and yield components in late maturing pro-vitamin A synthetic maize (Zea mays L.) breeding lines. Journal of Experimental Agriculture International. (2020). 64-72. https://doi.org/10.9734/jeai/2020/v42i130452

Onwubiko, N. C., M. I. Uguru, and G. O. Chimdi. Selection for yield improvement in Bambara groundnut (Vigna subterranea L. Verdc.). Journal of Plant Breeding and Genetics. (2019). 7(2), 41-53. https://doi.org/10.33687/pbg.007.002.2822

Pervin, N., and G. K. M. N. Haque. 2012. "Path coefficient analysis for fibre yield related traits in deshi jute (Corchorus capsularis L.)." International Research Journal of Applied Life Sciences. (2012). 1(3): 72-77.

Ratner, B. "The correlation coefficient: Its values range between +1/−1, or do they?" Journal of Targeting, Measurement and Analysis for Marketing. (2009). 17(2), 139-142. https://doi.org/10.1057/jt.2009.5

Ryu, J., S. J. Kwon, D. G. Kim, M. K. Lee, J. M. Kim, Y. D. Jo, S. H. Kim, S. W. Jeong, K. Y. Kang, S. W. Kim and J. B. Kim. "Morphological characteristics, chemical and genetic diversity of kenaf (Hibiscus cannabinus L.) genotypes." Journal of Plant Biotechnology. (2017). 44 (4): 416-430. https://doi.org/10.5010/JPB.2017.44.4.416

Sawarkar, A. S., S. O. Yumnam, S. G. Patil, and S. Mukherjee. "Correlation and path coefficient analysis of yield and its attributing traits in tossa jute (Corchorus olitorius L.)." The Bioscan. (2014). 9(2): 883-887.

Schober, P., C. Boer and L. A. Schwarte. Correlation coefficients: appropriate use and interpretation. Anesthesia & analgesia. (2018). 126(5): 1763-1768.

https://doi.org/10.1213/ANE.0000000000002864

Senapati, S., M. N. Ali, and B. G. Sasmal. "Genetic variability, heritability, and genetic advance in Corchorus sp." Environmental and Ecological Statistics. (2006). 24: 1-3.

Alemu, S. W., P. Bijma, S. H. Møller, L. Janss, and P. Berg. Indirect genetic effects contribute substantially to heritable variation in aggression-related traits in group-housed mink (Neovison vison). Genetics Selection Evolution. (2014). 46: 1-11. https://doi.org/10.1186/s12711-014-0070-8

Shukla, G. K., and D. P. Singh. "Studies on heritability correlation and discriminant function selection in jute." Indian Journal of Genetics and Plant Breeding. (1967). 27(2): 220.

Singh, R. K. and B. D. Chaudhary. Biometrical methods in quantitative genetic analysis. New Delhi: Kalyani Publishers, Ludhiana. (1977).

Sivasubramanian, S and P. M. Menon. Genotypic and phenotypic variability in rice. Madras Agriculture Journal. (1973). 60(9/13): 1093-1096.

Usman, M. G., M. Y. Rafii, M. R., Ismail, M. A., Malek, and M. Abdul Latif. Heritability and genetic advance among chili pepper genotypes for heat tolerance and morphophysiological characteristics. The Scientific World Journal. (2014). https://doi.org/10.1155/2014/308042

Usman, M. G., M. Y. Rafii, M. Y. Martini, Y. Oladosu, and P. Kashiani. "Genotypic character relationship and phenotypic path coefficient analysis in chili pepper genotypes grown under tropical condition." Journal of the Science of Food and Agriculture. (2017). 97(4): 1164-1171. https://doi.org/10.1002/jsfa.7843

Wong C. C., M. D. Mat Daham A. M. Abdul Aziz and O. Abdullah. "Kenaf germplasm introductions and assessment of their adaptability in Malaysia." Journal of Tropical Agriculture and Food Science. (2008). 36(1):1-19.

Wright, S. 1921. "Correlation and causation." Journal of Agricultural Research. (1921). 20(7): 557-585.

Downloads

Published

2024-12-13
CITATION
DOI: 10.56946/jspae.v3i2.494

How to Cite

Al-Mamun, M., Yusop, M. R., & Khan, M. M. H. (2024). Analysis of Genetic Diversity, Correlation, and Phenotypic Path Coefficients in Hybrids of Kenaf (Hibiscus Cannabinus L.) Cultivated for High Fibre Yield . Journal of Soil, Plant and Environment, 3(2), 105–122. https://doi.org/10.56946/jspae.v3i2.494

Issue

Section

Article